BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 31065055)

  • 1. Automatic Localization and Count of Agricultural Crop Pests Based on an Improved Deep Learning Pipeline.
    Li W; Chen P; Wang B; Xie C
    Sci Rep; 2019 May; 9(1):7024. PubMed ID: 31065055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Localization and Classification of Paddy Field Pests using a Saliency Map and Deep Convolutional Neural Network.
    Liu Z; Gao J; Yang G; Zhang H; He Y
    Sci Rep; 2016 Feb; 6():20410. PubMed ID: 26864172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel biomedical image indexing and retrieval system via deep preference learning.
    Pang S; Orgun MA; Yu Z
    Comput Methods Programs Biomed; 2018 May; 158():53-69. PubMed ID: 29544790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep Convolution Neural Network for Malignancy Detection and Classification in Microscopic Uterine Cervix Cell Images.
    P B S; Faruqi F; K S H; Kudva R
    Asian Pac J Cancer Prev; 2019 Nov; 20(11):3447-3456. PubMed ID: 31759371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Localization of common carotid artery transverse section in B-mode ultrasound images using faster RCNN: a deep learning approach.
    Jain PK; Gupta S; Bhavsar A; Nigam A; Sharma N
    Med Biol Eng Comput; 2020 Mar; 58(3):471-482. PubMed ID: 31897798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Based on the multi-scale information sharing network of fine-grained attention for agricultural pest detection.
    Linfeng W; Yong L; Jiayao L; Yunsheng W; Shipu X
    PLoS One; 2023; 18(10):e0286732. PubMed ID: 37796844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel method for peanut variety identification and classification by Improved VGG16.
    Yang H; Ni J; Gao J; Han Z; Luan T
    Sci Rep; 2021 Aug; 11(1):15756. PubMed ID: 34344983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep learning approaches using 2D and 3D convolutional neural networks for generating male pelvic synthetic computed tomography from magnetic resonance imaging.
    Fu J; Yang Y; Singhrao K; Ruan D; Chu FI; Low DA; Lewis JH
    Med Phys; 2019 Sep; 46(9):3788-3798. PubMed ID: 31220353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-Time Object Detection With Reduced Region Proposal Network via Multi-Feature Concatenation.
    Shih KH; Chiu CT; Lin JA; Bu YY
    IEEE Trans Neural Netw Learn Syst; 2020 Jun; 31(6):2164-2173. PubMed ID: 31443055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reducing the U-Net size for practical scenarios: Virus recognition in electron microscopy images.
    Matuszewski DJ; Sintorn IM
    Comput Methods Programs Biomed; 2019 Sep; 178():31-39. PubMed ID: 31416558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intelligent detection of citrus fruit pests using machine vision system and convolutional neural network through transfer learning technique.
    Hadipour-Rokni R; Askari Asli-Ardeh E; Jahanbakhshi A; Esmaili Paeen-Afrakoti I; Sabzi S
    Comput Biol Med; 2023 Mar; 155():106611. PubMed ID: 36774891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recognition pest by image-based transfer learning.
    Dawei W; Limiao D; Jiangong N; Jiyue G; Hongfei Z; Zhongzhi H
    J Sci Food Agric; 2019 Aug; 99(10):4524-4531. PubMed ID: 30868598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep feature classification of angiomyolipoma without visible fat and renal cell carcinoma in abdominal contrast-enhanced CT images with texture image patches and hand-crafted feature concatenation.
    Lee H; Hong H; Kim J; Jung DC
    Med Phys; 2018 Apr; 45(4):1550-1561. PubMed ID: 29474742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distillation of crop models to learn plant physiology theories using machine learning.
    Yamamoto K
    PLoS One; 2019; 14(5):e0217075. PubMed ID: 31141528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hyper-reflective foci segmentation in SD-OCT retinal images with diabetic retinopathy using deep convolutional neural networks.
    Yu C; Xie S; Niu S; Ji Z; Fan W; Yuan S; Liu Q; Chen Q
    Med Phys; 2019 Oct; 46(10):4502-4519. PubMed ID: 31315159
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the role and robustness of artificial intelligence in commodity image recognition under deep learning neural network.
    Chen R; Wang M; Lai Y
    PLoS One; 2020; 15(7):e0235783. PubMed ID: 32634167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A sparse deep learning model for privacy attack on remote sensing images.
    Wang EK; Zhe N; Li YP; Liang ZD; Zhang X; Yu JT; Ye YM
    Math Biosci Eng; 2019 Feb; 16(3):1300-1312. PubMed ID: 30947421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesizing images from multiple kernels using a deep convolutional neural network.
    Missert AD; Yu L; Leng S; Fletcher JG; McCollough CH
    Med Phys; 2020 Feb; 47(2):422-430. PubMed ID: 31714999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-Object Detection in Security Screening Scene Based on Convolutional Neural Network.
    Sun F; Zhang X; Liu Y; Jiang H
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep Visual Attention Prediction.
    Wenguan Wang ; Jianbing Shen
    IEEE Trans Image Process; 2018 May; 27(5):2368-2378. PubMed ID: 29990140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.