These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 31065344)

  • 1. Quantifying dissipation in actomyosin networks.
    Floyd C; Papoian GA; Jarzynski C
    Interface Focus; 2019 Jun; 9(3):20180078. PubMed ID: 31065344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MEDYAN: Mechanochemical Simulations of Contraction and Polarity Alignment in Actomyosin Networks.
    Popov K; Komianos J; Papoian GA
    PLoS Comput Biol; 2016 Apr; 12(4):e1004877. PubMed ID: 27120189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of the Arp2/3 complex in shaping the dynamics and structures of branched actomyosin networks.
    Liman J; Bueno C; Eliaz Y; Schafer NP; Waxham MN; Wolynes PG; Levine H; Cheung MS
    Proc Natl Acad Sci U S A; 2020 May; 117(20):10825-10831. PubMed ID: 32354995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Filament turnover tunes both force generation and dissipation to control long-range flows in a model actomyosin cortex.
    McFadden WM; McCall PM; Gardel ML; Munro EM
    PLoS Comput Biol; 2017 Dec; 13(12):e1005811. PubMed ID: 29253848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Entropy production rate is maximized in non-contractile actomyosin.
    Seara DS; Yadav V; Linsmeier I; Tabatabai AP; Oakes PW; Tabei SMA; Banerjee S; Murrell MP
    Nat Commun; 2018 Nov; 9(1):4948. PubMed ID: 30470750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Joint statistics of work and entropy production along quantum trajectories.
    Miller HJD; Mohammady MH; Perarnau-Llobet M; Guarnieri G
    Phys Rev E; 2021 May; 103(5-1):052138. PubMed ID: 34134351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissipation and energy propagation across scales in an active cytoskeletal material.
    Foster PJ; Bae J; Lemma B; Zheng J; Ireland W; Chandrakar P; Boros R; Dogic Z; Needleman DJ; Vlassak JJ
    Proc Natl Acad Sci U S A; 2023 Apr; 120(14):e2207662120. PubMed ID: 37000847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A tug of war between filament treadmilling and myosin induced contractility generates actin rings.
    Ni Q; Wagh K; Pathni A; Ni H; Vashisht V; Upadhyaya A; Papoian GA
    Elife; 2022 Oct; 11():. PubMed ID: 36269229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane-MEDYAN: Simulating Deformable Vesicles Containing Complex Cytoskeletal Networks.
    Ni H; Papoian GA
    J Phys Chem B; 2021 Sep; 125(38):10710-10719. PubMed ID: 34461720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physical origins of entropy production, free energy dissipation, and their mathematical representations.
    Ge H; Qian H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 1):051133. PubMed ID: 20866211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heat dissipation guides activation in signaling proteins.
    Weber JK; Shukla D; Pande VS
    Proc Natl Acad Sci U S A; 2015 Aug; 112(33):10377-82. PubMed ID: 26240354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prevalence of multistability and nonstationarity in driven chemical networks.
    Nicolaou ZG; Nicholson SB; Motter AE; Green JR
    J Chem Phys; 2023 Jun; 158(22):. PubMed ID: 37290086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissipation-Driven Selection under Finite Diffusion: Hints from Equilibrium and Separation of Time Scales.
    Liang S; De Los Rios P; Busiello DM
    Entropy (Basel); 2021 Aug; 23(8):. PubMed ID: 34441208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic cooperativity of molecular processes in active streaming, muscle contraction, and subcellular dynamics: the molecular mechanism of self-organization at the subcellular level.
    Shimizu H
    Adv Biophys; 1979; 13():195-278. PubMed ID: 161690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamics of stoichiometric biochemical networks in living systems far from equilibrium.
    Qian H; Beard DA
    Biophys Chem; 2005 Apr; 114(2-3):213-20. PubMed ID: 15829355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissipation, generalized free energy, and a self-consistent nonequilibrium thermodynamics of chemically driven open subsystems.
    Ge H; Qian H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062125. PubMed ID: 23848645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-organized stress patterns drive state transitions in actin cortices.
    Tan TH; Malik-Garbi M; Abu-Shah E; Li J; Sharma A; MacKintosh FC; Keren K; Schmidt CF; Fakhri N
    Sci Adv; 2018 Jun; 4(6):eaar2847. PubMed ID: 29881775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chaotic oscillations, dissipation and mirror symmetry breaking in a chiral catalytic network.
    Hochberg D; Sánchez Torralba A; Morán F
    Phys Chem Chem Phys; 2020 Dec; 22(46):27214-27223. PubMed ID: 33226043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Systems biology and the origins of life? part II. Are biochemical networks possible ancestors of living systems? networks of catalysed chemical reactions: non-equilibrium, self-organization and evolution.
    Ricard J
    C R Biol; 2010; 333(11-12):769-78. PubMed ID: 21146132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.