These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 31065346)

  • 1. Linking Gaussian process regression with data-driven manifold embeddings for nonlinear data fusion.
    Lee S; Dietrich F; Karniadakis GE; Kevrekidis IG
    Interface Focus; 2019 Jun; 9(3):20180083. PubMed ID: 31065346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonlinear information fusion algorithms for data-efficient multi-fidelity modelling.
    Perdikaris P; Raissi M; Damianou A; Lawrence ND; Karniadakis GE
    Proc Math Phys Eng Sci; 2017 Feb; 473(2198):20160751. PubMed ID: 28293137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bayesian Uncertainty Quantification with Multi-Fidelity Data and Gaussian Processes for Impedance Cardiography of Aortic Dissection.
    Ranftl S; Melito GM; Badeli V; Reinbacher-Köstinger A; Ellermann K; von der Linden W
    Entropy (Basel); 2019 Dec; 22(1):. PubMed ID: 33285833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Erratum: Eyestalk Ablation to Increase Ovarian Maturation in Mud Crabs.
    J Vis Exp; 2023 May; (195):. PubMed ID: 37235796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-Fidelity Aerodynamic Data Fusion with a Deep Neural Network Modeling Method.
    He L; Qian W; Zhao T; Wang Q
    Entropy (Basel); 2020 Sep; 22(9):. PubMed ID: 33286791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-fidelity information fusion with concatenated neural networks.
    Pawar S; San O; Vedula P; Rasheed A; Kvamsdal T
    Sci Rep; 2022 Apr; 12(1):5900. PubMed ID: 35393511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine learning modeling of lung mechanics: Assessing the variability and propagation of uncertainty in respiratory-system compliance and airway resistance.
    Barahona J; Sahli Costabal F; Hurtado DE
    Comput Methods Programs Biomed; 2024 Jan; 243():107888. PubMed ID: 37948910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving model fidelity and sensitivity for complex systems through empirical information theory.
    Majda AJ; Gershgorin B
    Proc Natl Acad Sci U S A; 2011 Jun; 108(25):10044-9. PubMed ID: 21646534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conditional Deep Gaussian Processes: Multi-Fidelity Kernel Learning.
    Lu CK; Shafto P
    Entropy (Basel); 2021 Nov; 23(11):. PubMed ID: 34828243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The deep arbitrary polynomial chaos neural network or how Deep Artificial Neural Networks could benefit from data-driven homogeneous chaos theory.
    Oladyshkin S; Praditia T; Kroeker I; Mohammadi F; Nowak W; Otte S
    Neural Netw; 2023 Sep; 166():85-104. PubMed ID: 37480771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A multi-fidelity Gaussian process for efficient frequency sweeps in the acoustic design of a vehicle cabin.
    Gurbuz C; Eser M; Schaffner J; Marburg S
    J Acoust Soc Am; 2023 Apr; 153(4):2006. PubMed ID: 37092922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Propagation of uncertainty in the mechanical and biological response of growing tissues using multi-fidelity Gaussian process regression.
    Lee T; Bilionis I; Tepole AB
    Comput Methods Appl Mech Eng; 2020 Feb; 359():. PubMed ID: 32863456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-fidelity modelling via recursive co-kriging and Gaussian-Markov random fields.
    Perdikaris P; Venturi D; Royset JO; Karniadakis GE
    Proc Math Phys Eng Sci; 2015 Jul; 471(2179):20150018. PubMed ID: 26345079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine learning for impurity charge-state transition levels in semiconductors from elemental properties using multi-fidelity datasets.
    Polak MP; Jacobs R; Mannodi-Kanakkithodi A; Chan MKY; Morgan D
    J Chem Phys; 2022 Mar; 156(11):114110. PubMed ID: 35317590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emergent Spaces for Coupled Oscillators.
    Thiem TN; Kooshkbaghi M; Bertalan T; Laing CR; Kevrekidis IG
    Front Comput Neurosci; 2020; 14():36. PubMed ID: 32528268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Patient Embeddings From Diagnosis Codes for Health Care Prediction Tasks: Pat2Vec Machine Learning Framework.
    Steiger E; Kroll LE
    JMIR AI; 2023 Apr; 2():e40755. PubMed ID: 38875541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-fidelity machine learning for predicting bandgaps of nonlinear optical crystals.
    Yu Z; Xue P; Xie BB; Shen L; Fang WH
    Phys Chem Chem Phys; 2024 Jun; 26(22):16378-16387. PubMed ID: 38805360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards efficient uncertainty quantification in complex and large-scale biomechanical problems based on a Bayesian multi-fidelity scheme.
    Biehler J; Gee MW; Wall WA
    Biomech Model Mechanobiol; 2015 Jun; 14(3):489-513. PubMed ID: 25245816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combined
    Maleckar MM; Myklebust L; Uv J; Florvaag PM; Strøm V; Glinge C; Jabbari R; Vejlstrup N; Engstrøm T; Ahtarovski K; Jespersen T; Tfelt-Hansen J; Naumova V; Arevalo H
    Front Physiol; 2021; 12():745349. PubMed ID: 34819872
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.