These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 31065423)

  • 1. Retinal optical coherence tomography image enhancement via deep learning.
    Halupka KJ; Antony BJ; Lee MH; Lucy KA; Rai RS; Ishikawa H; Wollstein G; Schuman JS; Garnavi R
    Biomed Opt Express; 2018 Dec; 9(12):6205-6221. PubMed ID: 31065423
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical coherence tomography image denoising using a generative adversarial network with speckle modulation.
    Dong Z; Liu G; Ni G; Jerwick J; Duan L; Zhou C
    J Biophotonics; 2020 Apr; 13(4):e201960135. PubMed ID: 31970879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-task generative adversarial network for retinal optical coherence tomography image denoising.
    Xie Q; Ma Z; Zhu L; Fan F; Meng X; Gao X; Zhu J
    Phys Med Biol; 2023 Feb; 68(4):. PubMed ID: 36137542
    [No Abstract]   [Full Text] [Related]  

  • 4. Employing texture loss to denoise OCT images using generative adversarial networks.
    Mehdizadeh M; Saha S; Alonso-Caneiro D; Kugelman J; MacNish C; Chen F
    Biomed Opt Express; 2024 Apr; 15(4):2262-2280. PubMed ID: 38633090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Noise-imitation learning: unpaired speckle noise reduction for optical coherence tomography.
    Yao B; Jin L; Hu J; Liu Y; Yan Y; Li Q; Lu Y
    Phys Med Biol; 2024 Sep; 69(18):. PubMed ID: 39151463
    [No Abstract]   [Full Text] [Related]  

  • 6. Ultrasound image denoising using generative adversarial networks with residual dense connectivity and weighted joint loss.
    Zhang L; Zhang J
    PeerJ Comput Sci; 2022; 8():e873. PubMed ID: 35494868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep feature loss to denoise OCT images using deep neural networks.
    Mehdizadeh M; MacNish C; Xiao D; Alonso-Caneiro D; Kugelman J; Bennamoun M
    J Biomed Opt; 2021 Apr; 26(4):. PubMed ID: 33893726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiscale denoising generative adversarial network for speckle reduction in optical coherence tomography images.
    Yu X; Ge C; Li M; Aziz MZ; Mo J; Fan Z
    J Med Imaging (Bellingham); 2023 Mar; 10(2):024006. PubMed ID: 37009058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Denoising of Optical Coherence Tomography Images in Ophthalmology Using Deep Learning: A Systematic Review.
    Ahmed H; Zhang Q; Donnan R; Alomainy A
    J Imaging; 2024 Apr; 10(4):. PubMed ID: 38667984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DHNet: High-resolution and hierarchical network for cross-domain OCT speckle noise reduction.
    Zhou Y; Li J; Wang M; Peng Y; Chen Z; Zhu W; Shi F; Wang L; Wang T; Yao C; Chen X
    Med Phys; 2022 Sep; 49(9):5914-5928. PubMed ID: 35611567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Segmentation of paracentral acute middle maculopathy lesions in spectral-domain optical coherence tomography images through weakly supervised deep convolutional networks.
    Zhang T; Wei Q; Li Z; Meng W; Zhang M; Zhang Z
    Comput Methods Programs Biomed; 2023 Oct; 240():107632. PubMed ID: 37329802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative study of deep neural networks with unsupervised Noise2Noise strategy for noise reduction of optical coherence tomography images.
    Qiu B; Zeng S; Meng X; Jiang Z; You Y; Geng M; Li Z; Hu Y; Huang Z; Zhou C; Ren Q; Lu Y
    J Biophotonics; 2021 Nov; 14(11):e202100151. PubMed ID: 34383390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-quality PET image synthesis from ultra-low-dose PET/MRI using bi-task deep learning.
    Sun H; Jiang Y; Yuan J; Wang H; Liang D; Fan W; Hu Z; Zhang N
    Quant Imaging Med Surg; 2022 Dec; 12(12):5326-5342. PubMed ID: 36465830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noise reduction in optical coherence tomography images using a deep neural network with perceptually-sensitive loss function.
    Qiu B; Huang Z; Liu X; Meng X; You Y; Liu G; Yang K; Maier A; Ren Q; Lu Y
    Biomed Opt Express; 2020 Feb; 11(2):817-830. PubMed ID: 32133225
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SiameseGAN: A Generative Model for Denoising of Spectral Domain Optical Coherence Tomography Images.
    Kande NA; Dakhane R; Dukkipati A; Yalavarthy PK
    IEEE Trans Med Imaging; 2021 Jan; 40(1):180-192. PubMed ID: 32924938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and quantitative assessment of deep learning-based image enhancement for optical coherence tomography.
    Zhao X; Lv B; Meng L; Zhou X; Wang D; Zhang W; Wang E; Lv C; Xie G; Chen Y
    BMC Ophthalmol; 2022 Mar; 22(1):139. PubMed ID: 35346124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Speckle noise reduction in optical coherence tomography images based on edge-sensitive cGAN.
    Ma Y; Chen X; Zhu W; Cheng X; Xiang D; Shi F
    Biomed Opt Express; 2018 Nov; 9(11):5129-5146. PubMed ID: 30460118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Limited parameter denoising for low-dose X-ray computed tomography using deep reinforcement learning.
    Patwari M; Gutjahr R; Raupach R; Maier A
    Med Phys; 2022 Jul; 49(7):4540-4553. PubMed ID: 35362172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noise-Powered Disentangled Representation for Unsupervised Speckle Reduction of Optical Coherence Tomography Images.
    Huang Y; Xia W; Lu Z; Liu Y; Chen H; Zhou J; Fang L; Zhang Y
    IEEE Trans Med Imaging; 2021 Oct; 40(10):2600-2614. PubMed ID: 33326376
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of Generative Adversarial Networks Model for Synthetic Optical Coherence Tomography Images of Retinal Disorders.
    Zheng C; Xie X; Zhou K; Chen B; Chen J; Ye H; Li W; Qiao T; Gao S; Yang J; Liu J
    Transl Vis Sci Technol; 2020 May; 9(2):29. PubMed ID: 32832202
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.