These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 31065427)

  • 41. Absolute optical responsivity down to the photon counting level with a photomultiplier tube.
    Tanabe M; Niwa K; Kinoshita K
    Rev Sci Instrum; 2017 Apr; 88(4):043104. PubMed ID: 28456233
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Measurement of the absorption and scattering properties of turbid liquid foods using hyperspectral imaging.
    Qin J; Lu R
    Appl Spectrosc; 2007 Apr; 61(4):388-96. PubMed ID: 17456257
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Direct approach to compute Jacobians for diffuse optical tomography using perturbation Monte Carlo-based photon "replay".
    Yao R; Intes X; Fang Q
    Biomed Opt Express; 2018 Oct; 9(10):4588-4603. PubMed ID: 30319888
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Collection of micromirror-modulated light in the single-pixel broadband hyperspectral microscope.
    Klein L; Žídek K
    Rev Sci Instrum; 2020 Jun; 91(6):063701. PubMed ID: 32611040
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Compressed single pixel imaging in the spatial frequency domain.
    Torabzadeh M; Park IY; Bartels RA; Durkin AJ; Tromberg BJ
    J Biomed Opt; 2017 Mar; 22(3):30501. PubMed ID: 28300272
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Extended-field coverage hyperspectral camera based on a single-pixel technique.
    Jin S; Hui W; Liu B; Ying C; Liu D; Ye Q; Zhou W; Tian J
    Appl Opt; 2016 Jun; 55(18):4808-13. PubMed ID: 27409103
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Structured illumination diffuse optical tomography for noninvasive functional neuroimaging in mice.
    Reisman MD; Markow ZE; Bauer AQ; Culver JP
    Neurophotonics; 2017 Apr; 4(2):021102. PubMed ID: 28439519
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Route to Intelligent Imaging Reconstruction via Terahertz Nonlinear Ghost Imaging.
    Totero Gongora JS; Olivieri L; Peters L; Tunesi J; Cecconi V; Cutrona A; Tucker R; Kumar V; Pasquazi A; Peccianti M
    Micromachines (Basel); 2020 May; 11(5):. PubMed ID: 32443881
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Spatial and spectral performance of a chromotomosynthetic hyperspectral imaging system.
    Bostick RL; Perram GP
    Rev Sci Instrum; 2012 Mar; 83(3):033110. PubMed ID: 22462909
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Portable lensless wide-field microscopy imaging platform based on digital inline holography and multi-frame pixel super-resolution.
    Sobieranski AC; Inci F; Tekin HC; Yuksekkaya M; Comunello E; Cobra D; von Wangenheim A; Demirci U
    Light Sci Appl; 2015; 4():. PubMed ID: 29657866
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Multispectral compressive fluorescence lifetime imaging microscopy with a SPAD array detector.
    Ghezzi A; Farina A; Bassi A; Valentini G; Labanca I; Acconcia G; Rech I; D'Andrea C
    Opt Lett; 2021 Mar; 46(6):1353-1356. PubMed ID: 33720185
    [TBL] [Abstract][Full Text] [Related]  

  • 52. MONSTIR II: a 32-channel, multispectral, time-resolved optical tomography system for neonatal brain imaging.
    Cooper RJ; Magee E; Everdell N; Magazov S; Varela M; Airantzis D; Gibson AP; Hebden JC
    Rev Sci Instrum; 2014 May; 85(5):053105. PubMed ID: 24880351
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A method for characterizing illumination systems for hyperspectral imaging.
    Katrašnik J; Pernuš F; Likar B
    Opt Express; 2013 Feb; 21(4):4841-53. PubMed ID: 23482018
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Fluorescence lifetime microscopy with a time- and space-resolved single-photon counting detector.
    Michalet X; Siegmund OHW; Vallerga JV; Jelinsky P; Pinaud FF; Millaud JE; Weiss S
    Proc SPIE Int Soc Opt Eng; 2006; 6372():. PubMed ID: 29449756
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Quantifying the absorption and reduced scattering coefficients of tissuelike turbid media over a broad spectral range with noncontact Fourier-transform hyperspectral imaging.
    Pham TH; Bevilacqua F; Spott T; Dam JS; Tromberg BJ; Andersson-Engels S
    Appl Opt; 2000 Dec; 39(34):6487-97. PubMed ID: 18354662
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Developing digital tissue phantoms for hyperspectral imaging of ischemic wounds.
    Xu RX; Allen DW; Huang J; Gnyawali S; Melvin J; Elgharably H; Gordillo G; Huang K; Bergdall V; Litorja M; Rice JP; Hwang J; Sen CK
    Biomed Opt Express; 2012 Jun; 3(6):1433-45. PubMed ID: 22741088
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [A wide-field push-broom hyperspectral imager based on curved prism].
    Nie YF; Xiangli B; Zhou JS; Huang M
    Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Jun; 32(6):1708-11. PubMed ID: 22870671
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Hyperspectral imaging in the spatial frequency domain with a supercontinuum source.
    Torabzadeh M; Stockton P; Kennedy G; Saager R; Durkin AJ; Bartels R; Tromberg B
    J Biomed Opt; 2019 Jul; 24(7):1-9. PubMed ID: 31271005
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Improvement of image quality in diffuse optical tomography by use of full time-resolved data.
    Gao F; Zhao H; Yamada Y
    Appl Opt; 2002 Feb; 41(4):778-91. PubMed ID: 11993926
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.