These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 31065442)
1. Assessing the biomechanical properties of the porcine crystalline lens as a function of intraocular pressure with optical coherence elastography. Wu C; Aglyamov SR; Han Z; Singh M; Liu CH; Larin KV Biomed Opt Express; 2018 Dec; 9(12):6455-6466. PubMed ID: 31065442 [TBL] [Abstract][Full Text] [Related]
2. Multimodal quantitative optical elastography of the crystalline lens with optical coherence elastography and Brillouin microscopy. Ambekar YS; Singh M; Zhang J; Nair A; Aglyamov SR; Scarcelli G; Larin KV Biomed Opt Express; 2020 Apr; 11(4):2041-2051. PubMed ID: 32341865 [TBL] [Abstract][Full Text] [Related]
3. The lens capsule significantly affects the viscoelastic properties of the lens as quantified by optical coherence elastography. Mekonnen T; Zevallos-Delgado C; Zhang H; Singh M; Aglyamov SR; Larin KV Front Bioeng Biotechnol; 2023; 11():1134086. PubMed ID: 36970614 [TBL] [Abstract][Full Text] [Related]
4. Optical coherence elastography of cold cataract in porcine lens. Zhang H; Wu C; Singh M; Nair A; Aglyamov S; Larin K J Biomed Opt; 2019 Mar; 24(3):1-7. PubMed ID: 30864348 [TBL] [Abstract][Full Text] [Related]
5. Assessing age-related changes in the biomechanical properties of rabbit lens using a coaligned ultrasound and optical coherence elastography system. Wu C; Han Z; Wang S; Li J; Singh M; Liu CH; Aglyamov S; Emelianov S; Manns F; Larin KV Invest Ophthalmol Vis Sci; 2015 Jan; 56(2):1292-300. PubMed ID: 25613945 [TBL] [Abstract][Full Text] [Related]
6. Characterization of Limbus Biomechanical Properties Using Optical Coherence Elastography. Zhang Y; Wang Y; Han X; Luo J; Lin C; Zhang Q; He X J Biophotonics; 2024 Nov; 17(11):e202400275. PubMed ID: 39225054 [TBL] [Abstract][Full Text] [Related]
7. Simultaneously imaging and quantifying Li Y; Zhu J; Chen JJ; Yu J; Jin Z; Miao Y; Browne AW; Zhou Q; Chen Z APL Photonics; 2019 Oct; 4(10):. PubMed ID: 32309636 [TBL] [Abstract][Full Text] [Related]
8. Investigating Elastic Anisotropy of the Porcine Cornea as a Function of Intraocular Pressure With Optical Coherence Elastography. Singh M; Li J; Han Z; Wu C; Aglyamov SR; Twa MD; Larin KV J Refract Surg; 2016 Aug; 32(8):562-7. PubMed ID: 27505317 [TBL] [Abstract][Full Text] [Related]
9. Optical coherence elastography for assessing the influence of intraocular pressure on elastic wave dispersion in the cornea. Sun MG; Son T; Crutison J; Guaiquil V; Lin S; Nammari L; Klatt D; Yao X; Rosenblatt MI; Royston TJ J Mech Behav Biomed Mater; 2022 Apr; 128():105100. PubMed ID: 35121423 [TBL] [Abstract][Full Text] [Related]
10. Assessing the effects of riboflavin/UV-A crosslinking on porcine corneal mechanical anisotropy with optical coherence elastography. Singh M; Li J; Han Z; Raghunathan R; Nair A; Wu C; Liu CH; Aglyamov S; Twa MD; Larin KV Biomed Opt Express; 2017 Jan; 8(1):349-366. PubMed ID: 28101423 [TBL] [Abstract][Full Text] [Related]
11. Dynamic Optical Coherence Elastography of the Anterior Eye: Understanding the Biomechanics of the Limbus. Zvietcovich F; Nair A; Singh M; Aglyamov SR; Twa MD; Larin KV Invest Ophthalmol Vis Sci; 2020 Nov; 61(13):7. PubMed ID: 33141893 [TBL] [Abstract][Full Text] [Related]
12. Quantitative evaluation of biomechanical properties of optic nerve head by using acoustic radiation force optical coherence elastography. Shi G; Zhang Y; Han X; Ai S; Wang Y; Li Y; Shi J; He X; Zheng X Neurophotonics; 2023 Oct; 10(4):045008. PubMed ID: 38076723 [TBL] [Abstract][Full Text] [Related]
13. Multifocal acoustic radiation force-based reverberant optical coherence elastography for evaluation of ocular globe biomechanical properties. Mekonnen T; Zevallos-Delgado C; Singh M; Aglyamov SR; Larin KV J Biomed Opt; 2023 Sep; 28(9):095001. PubMed ID: 37701876 [TBL] [Abstract][Full Text] [Related]
14. Ultrasonic elastography to assess biomechanical properties of the optic nerve head and peripapillary sclera of the eye. Qian X; Li R; Lu G; Jiang L; Kang H; Kirk Shung K; Humayun MS; Zhou Q Ultrasonics; 2021 Feb; 110():106263. PubMed ID: 33065466 [TBL] [Abstract][Full Text] [Related]
15. Delineating Corneal Elastic Anisotropy in a Porcine Model Using Noncontact OCT Elastography and Ex Vivo Mechanical Tests. Kirby MA; Pitre JJ; Liou HC; Li DS; Wang RK; Pelivanov I; O'Donnell M; Shen TT Ophthalmol Sci; 2021 Dec; 1(4):100058. PubMed ID: 36246948 [TBL] [Abstract][Full Text] [Related]
16. Acoustic Micro-Tapping Optical Coherence Elastography to Quantify Corneal Collagen Cross-Linking: An Ex Vivo Human Study. Kirby MA; Pelivanov I; Regnault G; Pitre JJ; Wallace RT; O'Donnell M; Wang RK; Shen TT Ophthalmol Sci; 2023 Jun; 3(2):100257. PubMed ID: 36685713 [TBL] [Abstract][Full Text] [Related]
17. Viscoelastic properties of porcine lenses using optical coherence elastography and inverse finite element analysis. Cabeza-Gil I; Tahsini V; Kling S Exp Eye Res; 2023 Aug; 233():109558. PubMed ID: 37385534 [TBL] [Abstract][Full Text] [Related]
18. Multiple Optical Elastography Techniques Reveal the Regulation of Corneal Stiffness by Collagen XII. Nair A; Ambekar YS; Zevallos-Delgado C; Mekonnen T; Sun M; Zvietcovich F; Singh M; Aglyamov S; Koch M; Scarcelli G; Espana EM; Larin KV Invest Ophthalmol Vis Sci; 2022 Nov; 63(12):24. PubMed ID: 36383352 [TBL] [Abstract][Full Text] [Related]
19. Two-dimensional elastic distribution imaging of the sclera using acoustic radiation force optical coherence elastography. Luo J; Zhang Y; Ai S; Shi G; Han X; Wang Y; Zhao Y; Yang H; Li Y; He X J Biophotonics; 2024 Feb; 17(2):e202300368. PubMed ID: 38010344 [TBL] [Abstract][Full Text] [Related]
20. Quantitative Evaluation of Human Lens and Lens Capsule Elasticity by Optical Coherence Elastography Based on a Rayleigh Wave Model. Shi G; Zhang Y; Wang Y; Ai S; Zhang C; He X; Zheng X J Biophotonics; 2024 Oct; ():e202400322. PubMed ID: 39420238 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]