BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 31065653)

  • 1. Temperature induced conformational changes in the elastin-like peptide GVG(VPGVG)
    Matt A; Kuttich B; Grillo I; Weißheit S; Thiele CM; Stühn B
    Soft Matter; 2019 May; 15(20):4192-4199. PubMed ID: 31065653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature-induced conformational transition of a model elastin-like peptide GVG(VPGVG)(3) in water.
    Krukau A; Brovchenko I; Geiger A
    Biomacromolecules; 2007 Jul; 8(7):2196-202. PubMed ID: 17567170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature-dependent conformational transitions and hydrogen-bond dynamics of the elastin-like octapeptide GVG(VPGVG): a molecular-dynamics study.
    Rousseau R; Schreiner E; Kohlmeyer A; Marx D
    Biophys J; 2004 Mar; 86(3):1393-407. PubMed ID: 14990469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular description of the LCST behavior of an elastin-like polypeptide.
    Li NK; García Quiroz F; Hall CK; Chilkoti A; Yingling YG
    Biomacromolecules; 2014 Oct; 15(10):3522-30. PubMed ID: 25142785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and Dynamical Properties of Elastin-Like Peptides near Their Lower Critical Solution Temperature.
    Morozova TI; García NA; Matsarskaia O; Roosen-Runge F; Barrat JL
    Biomacromolecules; 2023 Apr; 24(4):1912-1923. PubMed ID: 36877869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LCST Behavior is Manifested in a Single Molecule: Elastin-Like polypeptide (VPGVG)n.
    Zhao B; Li NK; Yingling YG; Hall CK
    Biomacromolecules; 2016 Jan; 17(1):111-8. PubMed ID: 26595324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational dynamics of minimal elastin-like polypeptides: the role of proline revealed by molecular dynamics and nuclear magnetic resonance.
    Glaves R; Baer M; Schreiner E; Stoll R; Marx D
    Chemphyschem; 2008 Dec; 9(18):2759-65. PubMed ID: 18972488
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the temperature- and pressure-induced inverse and reentrant transition of the minimum elastin-like polypeptide GVG(VPGVG) by DSC, PPC, CD, and FT-IR spectroscopy.
    Nicolini C; Ravindra R; Ludolph B; Winter R
    Biophys J; 2004 Mar; 86(3):1385-92. PubMed ID: 14990468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Short elastin-like peptides exhibit the same temperature-induced structural transitions as elastin polymers: implications for protein engineering.
    Reiersen H; Clarke AR; Rees AR
    J Mol Biol; 1998; 283(1):255-64. PubMed ID: 9761688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inverse temperature transition of a biomimetic elastin model: reactive flux analysis of folding/unfolding and its coupling to solvent dielectric relaxation.
    Baer M; Schreiner E; Kohlmeyer A; Rousseau R; Marx D
    J Phys Chem B; 2006 Mar; 110(8):3576-87. PubMed ID: 16494413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The molecular basis for the inverse temperature transition of elastin.
    Li B; Alonso DO; Daggett V
    J Mol Biol; 2001 Jan; 305(3):581-92. PubMed ID: 11152614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Secondary structure formation and LCST behavior of short elastin-like peptides.
    Nuhn H; Klok HA
    Biomacromolecules; 2008 Oct; 9(10):2755-63. PubMed ID: 18754687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Folding and unfolding of an elastinlike oligopeptide: "inverse temperature transition," reentrance, and hydrogen-bond dynamics.
    Schreiner E; Nicolini C; Ludolph B; Ravindra R; Otte N; Kohlmeyer A; Rousseau R; Winter R; Marx D
    Phys Rev Lett; 2004 Apr; 92(14):148101. PubMed ID: 15089575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the inverse temperature transition and development of an entropic elastomeric force of the elastin mimetic peptide [LGGVG](3, 7).
    Huang J; Sun C; Mitchell O; Ng N; Wang ZN; Boutis GS
    J Chem Phys; 2012 Feb; 136(8):085101. PubMed ID: 22380064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elasticity and Inverse Temperature Transition in Elastin.
    Perticaroli S; Ehlers G; Jalarvo N; Katsaras J; Nickels JD
    J Phys Chem Lett; 2015 Oct; 6(20):4018-25. PubMed ID: 26722771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The molecular basis of the temperature- and pH-induced conformational transitions in elastin-based peptides.
    Li B; Daggett V
    Biopolymers; 2003 Jan; 68(1):121-9. PubMed ID: 12579584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequence Directionality Dramatically Affects LCST Behavior of Elastin-Like Polypeptides.
    Li NK; Roberts S; Quiroz FG; Chilkoti A; Yingling YG
    Biomacromolecules; 2018 Jul; 19(7):2496-2505. PubMed ID: 29665334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular architecture influences the thermally induced aggregation behavior of elastin-like polypeptides.
    Ghoorchian A; Holland NB
    Biomacromolecules; 2011 Nov; 12(11):4022-9. PubMed ID: 21972921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-scale characterization of thermoresponsive dendritic elastin-like peptides.
    Zhou M; Shmidov Y; Matson JB; Bitton R
    Colloids Surf B Biointerfaces; 2017 May; 153():141-151. PubMed ID: 28236790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dimerization effects on coacervation property of an elastin-derived synthetic peptide (FPGVG)5.
    Suyama K; Taniguchi S; Tatsubo D; Maeda I; Nose T
    J Pept Sci; 2016 Apr; 22(4):236-43. PubMed ID: 27028208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.