BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 31065663)

  • 1. Switching plasmonic Fano resonance in gold nanosphere-nanoplate heterodimers.
    Lu W; Cui X; Chow TH; Shao L; Wang H; Chen H; Wang J
    Nanoscale; 2019 May; 11(19):9641-9653. PubMed ID: 31065663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep Fano resonance with strong polarization dependence in gold nanoplate-nanosphere heterodimers.
    Qin F; Lai Y; Yang J; Cui X; Ma H; Wang J; Lin HQ
    Nanoscale; 2017 Sep; 9(35):13222-13234. PubMed ID: 28853475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strengthening Fano resonance on gold nanoplates with gold nanospheres.
    Cui X; Lai Y; Qin F; Shao L; Wang J; Lin HQ
    Nanoscale; 2020 Jan; 12(3):1975-1984. PubMed ID: 31912072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular Tunnel Junction-Controlled High-Order Charge Transfer Plasmon and Fano Resonances.
    Cui X; Qin F; Lai Y; Wang H; Shao L; Chen H; Wang J; Lin HQ
    ACS Nano; 2018 Dec; 12(12):12541-12550. PubMed ID: 30462918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Double Fano resonances in hybrid disk/rod artificial plasmonic molecules based on dipole-quadrupole coupling.
    Chen Z; Zhang S; Chen Y; Liu Y; Li P; Wang Z; Zhu X; Bi K; Duan H
    Nanoscale; 2020 May; 12(17):9776-9785. PubMed ID: 32324182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strongly coupled evenly divided disks: a new compact and tunable platform for plasmonic Fano resonances.
    Zhang S; Zhu X; Xiao W; Shi H; Wang Y; Chen Z; Chen Y; Sun K; Muskens OL; De Groot CH; Liu SD; Duan H
    Nanotechnology; 2020 Aug; 31(32):325202. PubMed ID: 32340011
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Colloidal Gold Nanorings and Their Plasmon Coupling with Gold Nanospheres.
    Chow TH; Lai Y; Cui X; Lu W; Zhuo X; Wang J
    Small; 2019 Aug; 15(35):e1902608. PubMed ID: 31304668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-reference plasmonic sensors based on double Fano resonances.
    Wang Y; Sun C; Li H; Gong Q; Chen J
    Nanoscale; 2017 Aug; 9(31):11085-11092. PubMed ID: 28741643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Observation of the Fano resonance in gold nanorods supported on high-dielectric-constant substrates.
    Chen H; Shao L; Ming T; Woo KC; Man YC; Wang J; Lin HQ
    ACS Nano; 2011 Aug; 5(8):6754-63. PubMed ID: 21786827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pronounced Fano Resonance in Single Gold Split Nanodisks with 15 nm Split Gaps for Intensive Second Harmonic Generation.
    Zhang S; Li GC; Chen Y; Zhu X; Liu SD; Lei DY; Duan H
    ACS Nano; 2016 Dec; 10(12):11105-11114. PubMed ID: 28024358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fano Resonance-Based Blood Plasma Monitoring and Sensing using Plasmonic Nanomatryoshka.
    Pathania P; Shishodia MS
    Plasmonics; 2021; 16(6):2117-2124. PubMed ID: 34131417
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmonic Fano resonances in nanohole quadrumers for ultra-sensitive refractive index sensing.
    Zhan Y; Lei DY; Li X; Maier SA
    Nanoscale; 2014 May; 6(9):4705-15. PubMed ID: 24658052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tailoring Fano lineshapes using plasmonic nanobars for highly sensitive sensing and directional emission.
    Li G; Hu H; Wu L
    Phys Chem Chem Phys; 2018 Dec; 21(1):252-259. PubMed ID: 30519701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Directional Fano resonance in a silicon nanosphere dimer.
    Yan J; Liu P; Lin Z; Wang H; Chen H; Wang C; Yang G
    ACS Nano; 2015 Mar; 9(3):2968-80. PubMed ID: 25683067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical Switching of Plasmonic Colors Based on Polyaniline-Coated Plasmonic Nanocrystals.
    Lu W; Chow TH; Lai SN; Zheng B; Wang J
    ACS Appl Mater Interfaces; 2020 Apr; 12(15):17733-17744. PubMed ID: 32195574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunable Nanosensor Based on Fano Resonances Created by Changing the Deviation Angle of the Metal Core in a Plasmonic Cavity.
    Wang Q; Ouyang Z; Sun Y; Lin M; Liu Q; Zheng G; Fan J
    Sensors (Basel); 2018 Mar; 18(4):. PubMed ID: 29596341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering the plasmonic optical properties of cubic silver nanostructures based on Fano resonance.
    Yang Z; Wang M; Song X; Deng J; Yao X
    J Chem Phys; 2013 Oct; 139(16):164713. PubMed ID: 24182070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunability of subradiant dipolar and fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing.
    Hao F; Nordlander P; Sonnefraud Y; Van Dorpe P; Maier SA
    ACS Nano; 2009 Mar; 3(3):643-52. PubMed ID: 19309172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Higher order Fano graphene metamaterials for nanoscale optical sensing.
    Guo X; Hu H; Zhu X; Yang X; Dai Q
    Nanoscale; 2017 Oct; 9(39):14998-15004. PubMed ID: 28956583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmonic Sensing and Switches Enriched by Tailorable Multiple Fano Resonances in Rotational Misalignment Metasurfaces.
    Xu X; Luo XQ; Liu Q; Li Y; Zhu W; Chen Z; Liu W; Wang XL
    Nanomaterials (Basel); 2022 Nov; 12(23):. PubMed ID: 36500849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.