These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 31066136)
21. Interfacial engineering of novel inorganic-organic β-Ga Yang R; Chen Q; Huang G; Bi J Environ Res; 2023 Jan; 216(Pt 1):114541. PubMed ID: 36228690 [TBL] [Abstract][Full Text] [Related]
22. Tin(II)-Based Metal-Organic Frameworks Enabling Efficient, Selective Reduction of CO Kamakura Y; Suppaso C; Yamamoto I; Mizuochi R; Asai Y; Motohashi T; Tanaka D; Maeda K Angew Chem Int Ed Engl; 2023 Jul; 62(28):e202305923. PubMed ID: 37156728 [TBL] [Abstract][Full Text] [Related]
23. Surface Plasmon-Assisted Solar Energy Conversion. Dodekatos G; Schünemann S; Tüysüz H Top Curr Chem; 2016; 371():215-52. PubMed ID: 26092694 [TBL] [Abstract][Full Text] [Related]
24. An Artificial Photosystem of Metal-Insulator-CTF Nanoarchitectures for Highly Efficient and Selective CO Tian J; Zhang J; Xu B; Chen Q; Huang G; Bi J ChemSusChem; 2022 Sep; 15(18):e202201107. PubMed ID: 35841604 [TBL] [Abstract][Full Text] [Related]
25. Construction of a Z-scheme heterojunction for high-efficiency visible-light-driven photocatalytic CO Zhang G; Wang Z; Wu J Nanoscale; 2021 Mar; 13(8):4359-4389. PubMed ID: 33621289 [TBL] [Abstract][Full Text] [Related]
26. Unique Solvent Effects on Visible-Light CO2 Reduction over Ruthenium(II)-Complex/Carbon Nitride Hybrid Photocatalysts. Kuriki R; Ishitani O; Maeda K ACS Appl Mater Interfaces; 2016 Mar; 8(9):6011-8. PubMed ID: 26891142 [TBL] [Abstract][Full Text] [Related]
27. Converting CO Shen M; Zhang L; Shi J Nanotechnology; 2018 Oct; 29(41):412001. PubMed ID: 30027893 [TBL] [Abstract][Full Text] [Related]
28. Molecular Catalysts Immobilized on Semiconductor Photosensitizers for Proton Reduction toward Visible-Light-Driven Overall Water Splitting. Morikawa T; Sato S; Sekizawa K; Arai T; Suzuki TM ChemSusChem; 2019 May; 12(9):1807-1824. PubMed ID: 30963707 [TBL] [Abstract][Full Text] [Related]
29. Supramolecular photocatalysts fixed on the inside of the polypyrrole layer in dye sensitized molecular photocathodes: application to photocatalytic CO Kuttassery F; Kumagai H; Kamata R; Ebato Y; Higashi M; Suzuki H; Abe R; Ishitani O Chem Sci; 2021 Oct; 12(39):13216-13232. PubMed ID: 34745553 [TBL] [Abstract][Full Text] [Related]
30. Resorcinol-formaldehyde resins as metal-free semiconductor photocatalysts for solar-to-hydrogen peroxide energy conversion. Shiraishi Y; Takii T; Hagi T; Mori S; Kofuji Y; Kitagawa Y; Tanaka S; Ichikawa S; Hirai T Nat Mater; 2019 Sep; 18(9):985-993. PubMed ID: 31263224 [TBL] [Abstract][Full Text] [Related]
31. Artificial Z-scheme constructed with a supramolecular metal complex and semiconductor for the photocatalytic reduction of CO2. Sekizawa K; Maeda K; Domen K; Koike K; Ishitani O J Am Chem Soc; 2013 Mar; 135(12):4596-9. PubMed ID: 23470246 [TBL] [Abstract][Full Text] [Related]
32. The Development of Cocatalysts for Photoelectrochemical CO Chang X; Wang T; Yang P; Zhang G; Gong J Adv Mater; 2019 Aug; 31(31):e1804710. PubMed ID: 30537099 [TBL] [Abstract][Full Text] [Related]
33. Highly efficient visible light photocatalytic reduction of CO2 to hydrocarbon fuels by Cu-nanoparticle decorated graphene oxide. Shown I; Hsu HC; Chang YC; Lin CH; Roy PK; Ganguly A; Wang CH; Chang JK; Wu CI; Chen LC; Chen KH Nano Lett; 2014 Nov; 14(11):6097-103. PubMed ID: 25354234 [TBL] [Abstract][Full Text] [Related]
34. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Habisreutinger SN; Schmidt-Mende L; Stolarczyk JK Angew Chem Int Ed Engl; 2013 Jul; 52(29):7372-408. PubMed ID: 23765842 [TBL] [Abstract][Full Text] [Related]
35. Semiconductor Quantum Dots: An Emerging Candidate for CO Wu HL; Li XB; Tung CH; Wu LZ Adv Mater; 2019 Sep; 31(36):e1900709. PubMed ID: 31271262 [TBL] [Abstract][Full Text] [Related]
36. Development and Functionalization of Visible-Light-Driven Water-Splitting Photocatalysts. Kawawaki T; Kawachi M; Yazaki D; Akinaga Y; Hirayama D; Negishi Y Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159689 [TBL] [Abstract][Full Text] [Related]
37. Accumulative charge separation for solar fuels production: coupling light-induced single electron transfer to multielectron catalysis. Hammarström L Acc Chem Res; 2015 Mar; 48(3):840-50. PubMed ID: 25675365 [TBL] [Abstract][Full Text] [Related]
38. Recent advances in visible-light-responsive photocatalysts for hydrogen production and solar energy conversion--from semiconducting TiO2 to MOF/PCP photocatalysts. Horiuchi Y; Toyao T; Takeuchi M; Matsuoka M; Anpo M Phys Chem Chem Phys; 2013 Aug; 15(32):13243-53. PubMed ID: 23760469 [TBL] [Abstract][Full Text] [Related]
39. Strategies for Efficient Charge Separation and Transfer in Artificial Photosynthesis of Solar Fuels. Xu Y; Li A; Yao T; Ma C; Zhang X; Shah JH; Han H ChemSusChem; 2017 Nov; 10(22):4277-4305. PubMed ID: 29105988 [TBL] [Abstract][Full Text] [Related]