These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 31066269)

  • 1. Impact Ionization Induced by Accelerated Photoelectrons for Wide-Range and Highly Sensitive Detection of Volatile Organic Compounds at Room Temperature.
    Kang Y; Pyo S; Jeong HI; Lee K; Baek DH; Kim J
    ACS Appl Mater Interfaces; 2019 Jun; 11(22):20491-20499. PubMed ID: 31066269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-performance gas sensors based on single-wall carbon nanotube random networks for the detection of nitric oxide down to the ppb-level.
    Jeon JY; Kang BC; Byun YT; Ha TJ
    Nanoscale; 2019 Jan; 11(4):1587-1594. PubMed ID: 30543231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-cost photoionization sensors as detectors in GC × GC systems designed for ambient VOC measurements.
    Pang X; Nan H; Zhong J; Ye D; Shaw MD; Lewis AC
    Sci Total Environ; 2019 May; 664():771-779. PubMed ID: 30763857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface Functionalization of Layered Molybdenum Disulfide for the Selective Detection of Volatile Organic Compounds at Room Temperature.
    Chen WY; Yen CC; Xue S; Wang H; Stanciu LA
    ACS Appl Mater Interfaces; 2019 Sep; 11(37):34135-34143. PubMed ID: 31453680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene-enhanced metal oxide gas sensors at room temperature: a review.
    Sun D; Luo Y; Debliquy M; Zhang C
    Beilstein J Nanotechnol; 2018; 9():2832-2844. PubMed ID: 30498655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective Toluene Detection with Mo
    Guo W; Surya SG; Babar V; Ming F; Sharma S; Alshareef HN; Schwingenschlögl U; Salama KN
    ACS Appl Mater Interfaces; 2020 Dec; 12(51):57218-57227. PubMed ID: 33289555
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sulfur-Doped Titanium Carbide MXenes for Room-Temperature Gas Sensing.
    Shuvo SN; Ulloa Gomez AM; Mishra A; Chen WY; Dongare AM; Stanciu LA
    ACS Sens; 2020 Sep; 5(9):2915-2924. PubMed ID: 32786375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoelectron emission as an alternative electron impact ionization source for ion trap mass spectrometry.
    Gamez G; Zhu L; Schmitz TA; Zenobi R
    Anal Chem; 2008 Sep; 80(17):6791-5. PubMed ID: 18665611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-Temperature Photochemically Activated Amorphous Indium-Gallium-Zinc Oxide for Highly Stable Room-Temperature Gas Sensors.
    Jaisutti R; Kim J; Park SK; Kim YH
    ACS Appl Mater Interfaces; 2016 Aug; 8(31):20192-9. PubMed ID: 27430635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. First-principles insights into the C
    Zhang R; Wang Z; Hou Q; Yuan X; Yong Y; Cui H; Li X
    RSC Adv; 2023 Sep; 13(41):28703-28712. PubMed ID: 37790102
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metallic Ti
    Kim SJ; Koh HJ; Ren CE; Kwon O; Maleski K; Cho SY; Anasori B; Kim CK; Choi YK; Kim J; Gogotsi Y; Jung HT
    ACS Nano; 2018 Feb; 12(2):986-993. PubMed ID: 29368519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of volatile-organic-compounds (VOCs) in solution using cantilever-based gas sensors.
    Bao Y; Xu P; Cai S; Yu H; Li X
    Talanta; 2018 May; 182():148-155. PubMed ID: 29501134
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid Photonic Cavity with Metal-Organic Framework Coatings for the Ultra-Sensitive Detection of Volatile Organic Compounds with High Immunity to Humidity.
    Tao J; Wang X; Sun T; Cai H; Wang Y; Lin T; Fu D; Ting LL; Gu Y; Zhao D
    Sci Rep; 2017 Jan; 7():41640. PubMed ID: 28139714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Au-Polypyrrole Framework Nanostructures for Improved Localized Surface Plasmon Resonance Volatile Organic Compounds Gas Sensing.
    Lee JS; Yoon NR; Kang BH; Lee SW; Gopalan SA; Kim SW; Lee SH; Kwon DH; Kang SW
    J Nanosci Nanotechnol; 2015 Oct; 15(10):7738-42. PubMed ID: 26726404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative volatile organic compound sensing with liquid crystal core fibers.
    Schelski K; Reyes CG; Pschyklenk L; Kaul PM; Lagerwall JPF
    Cell Rep Phys Sci; 2021 Dec; 2(12):100661. PubMed ID: 35028624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption/Combustion-type Micro Gas Sensors: Typical VOC-sensing Properties and Material-design Approach for Highly Sensitive and Selective VOC Detection.
    Hyodo T; Shimizu Y
    Anal Sci; 2020 Apr; 36(4):401-411. PubMed ID: 32062633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MEMS-Based Ionization Gas Sensors for VOCs with Array of Nanostructured Silicon Needles.
    Wang B; Dong XS; Wang Z; Wang YF; Hou ZY
    ACS Sens; 2020 Apr; 5(4):994-1001. PubMed ID: 32174111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Room Temperature Humidity Tolerant Xylene Sensor Using a Sn-SnO
    Verma M; Bahuguna G; Saharan A; Gaur S; Haick H; Gupta R
    ACS Appl Mater Interfaces; 2023 Feb; 15(4):5512-5520. PubMed ID: 36651864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The ignored emission of volatile organic compounds from iron ore sinter process.
    Li J; He X; Pei B; Li X; Ying D; Wang Y; Jia J
    J Environ Sci (China); 2019 Mar; 77():282-290. PubMed ID: 30573092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a smartphone-based real time cost-effective VOC sensor.
    Das T; Mohar M
    Heliyon; 2020 Oct; 6(10):e05167. PubMed ID: 33088950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.