These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 31066432)

  • 1. Smart inverse design of graphene-based photonic metamaterials by an adaptive artificial neural network.
    Chen Y; Zhu J; Xie Y; Feng N; Liu QH
    Nanoscale; 2019 May; 11(19):9749-9755. PubMed ID: 31066432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complex Inverse Design of Meta-optics by Segmented Hierarchical Evolutionary Algorithm.
    Jin Z; Mei S; Chen S; Li Y; Zhang C; He Y; Yu X; Yu C; Yang JKW; Luk'yanchuk B; Xiao S; Qiu CW
    ACS Nano; 2019 Jan; 13(1):821-829. PubMed ID: 30615418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning and evolutionary algorithm studies of graphene metamaterials for optimized plasmon-induced transparency.
    Zhang T; Liu Q; Dan Y; Yu S; Han X; Dai J; Xu K
    Opt Express; 2020 Jun; 28(13):18899-18916. PubMed ID: 32672179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of metamaterials and metamaterial-microcavity based on deep neural networks.
    Lan G; Wang Y; Ou JY
    Nanoscale Adv; 2022 Nov; 4(23):5137-5143. PubMed ID: 36504733
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrically switchable metadevices via graphene.
    Balci O; Kakenov N; Karademir E; Balci S; Cakmakyapan S; Polat EO; Caglayan H; Ă–zbay E; Kocabas C
    Sci Adv; 2018 Jan; 4(1):eaao1749. PubMed ID: 29322094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterogeneously Assembled Metamaterials and Metadevices via 3D Modular Transfer Printing.
    Lee S; Kang B; Keum H; Ahmed N; Rogers JA; Ferreira PM; Kim S; Min B
    Sci Rep; 2016 Jun; 6():27621. PubMed ID: 27283594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intelligent nanophotonics: merging photonics and artificial intelligence at the nanoscale.
    Yao K; Unni R; Zheng Y
    Nanophotonics; 2019 Mar; 8(3):339-366. PubMed ID: 34290952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical circular dichroism engineering in chiral metamaterials utilizing a deep learning network.
    Tao Z; You J; Zhang J; Zheng X; Liu H; Jiang T
    Opt Lett; 2020 Mar; 45(6):1403-1406. PubMed ID: 32163977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. All-dielectric metamaterials.
    Jahani S; Jacob Z
    Nat Nanotechnol; 2016 Jan; 11(1):23-36. PubMed ID: 26740041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Achieving efficient inverse design of low-dimensional heterostructures based on a vigorous scalable multi-task learning network.
    Du S; You J; Tang Y; Ouyang H; Tao Z; Jiang T
    Opt Express; 2021 Jun; 29(13):19727-19742. PubMed ID: 34266077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inverse design of an integrated-nanophotonics optical neural network.
    Qu Y; Zhu H; Shen Y; Zhang J; Tao C; Ghosh P; Qiu M
    Sci Bull (Beijing); 2020 Jul; 65(14):1177-1183. PubMed ID: 36659147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous Inverse Design of Materials and Structures via Deep Learning: Demonstration of Dipole Resonance Engineering Using Core-Shell Nanoparticles.
    So S; Mun J; Rho J
    ACS Appl Mater Interfaces; 2019 Jul; 11(27):24264-24268. PubMed ID: 31199610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Realization of mid-infrared graphene hyperbolic metamaterials.
    Chang YC; Liu CH; Liu CH; Zhang S; Marder SR; Narimanov EE; Zhong Z; Norris TB
    Nat Commun; 2016 Feb; 7():10568. PubMed ID: 26843149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probabilistic Representation and Inverse Design of Metamaterials Based on a Deep Generative Model with Semi-Supervised Learning Strategy.
    Ma W; Cheng F; Xu Y; Wen Q; Liu Y
    Adv Mater; 2019 Aug; 31(35):e1901111. PubMed ID: 31259443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient inverse design and spectrum prediction for nanophotonic devices based on deep recurrent neural networks.
    Yan R; Wang T; Jiang X; Huang X; Wang L; Yue X; Wang H; Wang Y
    Nanotechnology; 2021 May; 32(33):. PubMed ID: 33971632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From metamaterials to metadevices.
    Zheludev NI; Kivshar YS
    Nat Mater; 2012 Nov; 11(11):917-24. PubMed ID: 23089997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Smart and Rapid Design of Nanophotonic Structures by an Adaptive and Regularized Deep Neural Network.
    Li R; Gu X; Shen Y; Li K; Li Z; Zhang Z
    Nanomaterials (Basel); 2022 Apr; 12(8):. PubMed ID: 35458079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Data-driven design of thin-film optical systems using deep active learning.
    Hong Y; Nicholls DP
    Opt Express; 2022 Jun; 30(13):22901-22910. PubMed ID: 36224980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Artificial Metaphotonics Born Naturally in Two Dimensions.
    Dai Z; Hu G; Ou Q; Zhang L; Xia F; Garcia-Vidal FJ; Qiu CW; Bao Q
    Chem Rev; 2020 Jul; 120(13):6197-6246. PubMed ID: 32496053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmonic nanoparticle simulations and inverse design using machine learning.
    He J; He C; Zheng C; Wang Q; Ye J
    Nanoscale; 2019 Sep; 11(37):17444-17459. PubMed ID: 31531431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.