BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 31066954)

  • 1. The Effect of Thermal Treatment on the Hydrogen-Storage Properties of PIM-1.
    Ramimoghadam D; Boyd SE; Brown CL; Mac A Gray E; Webb CJ
    Chemphyschem; 2019 Jun; 20(12):1613-1623. PubMed ID: 31066954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical characterisation of polymer of intrinsic microporosity PIM-1 for hydrogen storage applications.
    Polak-Kraśna K; Dawson R; Holyfield LT; Bowen CR; Burrows AD; Mays TJ
    J Mater Sci; 2017; 52(7):3862-3875. PubMed ID: 32355363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterisation of porous hydrogen storage materials: carbons, zeolites, MOFs and PIMs.
    Tedds S; Walton A; Broom DP; Book D
    Faraday Discuss; 2011; 151():75-94; discussion 95-115. PubMed ID: 22455064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The potential of organic polymer-based hydrogen storage materials.
    Budd PM; Butler A; Selbie J; Mahmood K; McKeown NB; Ghanem B; Msayib K; Book D; Walton A
    Phys Chem Chem Phys; 2007 Apr; 9(15):1802-8. PubMed ID: 17415491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polymers of Intrinsic Microporosity Chemical Sorbents Utilizing Primary Amine Appendance Through Acid-Base and Hydrogen-Bonding Interactions.
    Sekizkardes AK; Hammache S; Hoffman JS; Hopkinson D
    ACS Appl Mater Interfaces; 2019 Aug; 11(34):30987-30991. PubMed ID: 31368688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Postsynthetically Modified Polymers of Intrinsic Microporosity (PIMs) for Capturing Toxic Gases.
    Jung D; Chen Z; Alayoglu S; Mian MR; Goetjen TA; Idrees KB; Kirlikovali KO; Islamoglu T; Farha OK
    ACS Appl Mater Interfaces; 2021 Mar; 13(8):10409-10415. PubMed ID: 33591706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulated swelling during low-temperature N2 adsorption in polymers of intrinsic microporosity.
    Hart KE; Springmeier JM; McKeown NB; Colina CM
    Phys Chem Chem Phys; 2013 Dec; 15(46):20161-9. PubMed ID: 24162439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effective Conversion of Amide to Carboxylic Acid on Polymers of Intrinsic Microporosity (PIM-1) with Nitrous Acid.
    Wu WH; Thomas P; Hume P; Jin J
    Membranes (Basel); 2018 Apr; 8(2):. PubMed ID: 29670058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How Much Do Ultrathin Polymers with Intrinsic Microporosity Swell in Liquids?
    Ogieglo W; Ghanem B; Ma X; Pinnau I; Wessling M
    J Phys Chem B; 2016 Oct; 120(39):10403-10410. PubMed ID: 27622683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Pressure CO
    Ogieglo W; Ghanem B; Ma X; Wessling M; Pinnau I
    ACS Appl Mater Interfaces; 2018 Apr; 10(13):11369-11376. PubMed ID: 29528618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal Cross Linking of Novel Azide Modified Polymers of Intrinsic Microporosity-Effect of Distribution and the Gas Separation Performance.
    Neumann S; Bengtson G; Meis D; Filiz V
    Polymers (Basel); 2019 Jul; 11(8):. PubMed ID: 31357493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage.
    McKeown NB; Budd PM
    Chem Soc Rev; 2006 Aug; 35(8):675-83. PubMed ID: 16862268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anomalies in the low frequency vibrational density of states for a polymer with intrinsic microporosity - the Boson peak of PIM-1.
    Zorn R; Yin H; Lohstroh W; Harrison W; Budd PM; Pauw BR; Böhning M; Schönhals A
    Phys Chem Chem Phys; 2018 Jan; 20(3):1355-1363. PubMed ID: 29255828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of aniline from air and water by polymers of intrinsic microporosity (PIM-1) electrospun ultrafine fibers.
    Satilmis B; Uyar T
    J Colloid Interface Sci; 2018 Apr; 516():317-324. PubMed ID: 29408119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chiral polymers of intrinsic microporosity: selective membrane permeation of enantiomers.
    Weng X; Baez JE; Khiterer M; Hoe MY; Bao Z; Shea KJ
    Angew Chem Int Ed Engl; 2015 Sep; 54(38):11214-8. PubMed ID: 26352031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of Sub-Ambient Temperature on Aging Rate and Gas Separation Properties of Polymers of Intrinsic Microporosity.
    Dieudonné P; Rea R; Lasseuguette E; Ferrari MC
    Membranes (Basel); 2024 Jun; 14(6):. PubMed ID: 38921499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bifunctionalized Intrinsically Microporous Polyimides with Simultaneously Enhanced Gas Permeability and Selectivity.
    Ma X; Mukaddam M; Pinnau I
    Macromol Rapid Commun; 2016 Jun; 37(11):900-4. PubMed ID: 27027259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature Dependence of Gas Permeation and Diffusion in Triptycene-Based Ultrapermeable Polymers of Intrinsic Microporosity.
    Fuoco A; Comesaña-Gándara B; Longo M; Esposito E; Monteleone M; Rose I; Bezzu CG; Carta M; McKeown NB; Jansen JC
    ACS Appl Mater Interfaces; 2018 Oct; 10(42):36475-36482. PubMed ID: 30265512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ionic-Functionalized Polymers of Intrinsic Microporosity for Gas Separation Applications.
    Rukmani SJ; Liyana-Arachchi TP; Hart KE; Colina CM
    Langmuir; 2018 Apr; 34(13):3949-3960. PubMed ID: 29553745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling Mixed-Gas Sorption in Glassy Polymers for CO₂ Removal: A Sensitivity Analysis of the Dual Mode Sorption Model.
    Ricci E; De Angelis MG
    Membranes (Basel); 2019 Jan; 9(1):. PubMed ID: 30621225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.