These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
551 related articles for article (PubMed ID: 31067007)
1. Fracture resistance and failure modes of endocrowns manufactured with different CAD/CAM materials under axial and lateral loading. El Ghoul W; Özcan M; Silwadi M; Salameh Z J Esthet Restor Dent; 2019 Jul; 31(4):378-387. PubMed ID: 31067007 [TBL] [Abstract][Full Text] [Related]
2. Features of fracture of prosthetic tooth-endocrown constructions by means of acoustic emission analysis. Skalskyi V; Makeev V; Stankevych O; Pavlychko R Dent Mater; 2018 Mar; 34(3):e46-e55. PubMed ID: 29409675 [TBL] [Abstract][Full Text] [Related]
3. Post-fatigue fracture resistance of premolar teeth restored with endocrowns: An in vitro investigation. Hassouneh L; Jum'ah AA; Ferrari M; Wood DJ J Dent; 2020 Sep; 100():103426. PubMed ID: 32628987 [TBL] [Abstract][Full Text] [Related]
4. Influence of Adhesive Core Buildup Designs on the Resistance of Endodontically Treated Molars Restored With Lithium Disilicate CAD/CAM Crowns. Carvalho AO; Bruzi G; Anderson RE; Maia HP; Giannini M; Magne P Oper Dent; 2016; 41(1):76-82. PubMed ID: 26266647 [TBL] [Abstract][Full Text] [Related]
5. Restoration of severely damaged endodontically treated premolars: The influence of the endo-core length on marginal integrity and fatigue resistance of lithium disilicate CAD-CAM ceramic endocrowns. Rocca GT; Daher R; Saratti CM; Sedlacek R; Suchy T; Feilzer AJ; Krejci I J Dent; 2018 Jan; 68():41-50. PubMed ID: 29107134 [TBL] [Abstract][Full Text] [Related]
6. Marginal gap distance and cyclic fatigue loading for different all-ceramic endocrowns. Elsayed SM; Emam ZN; Abu-Nawareg M; Zidan AZ; Elsisi HA; Abuelroos EM; Fansa HA; Shokier HMR; Elbanna KA Eur Rev Med Pharmacol Sci; 2023 Feb; 27(3):879-887. PubMed ID: 36808333 [TBL] [Abstract][Full Text] [Related]
7. Assessment of marginal adaptation and fracture resistance of endocrown restorations utilizing different machinable blocks subjected to thermomechanical aging. Taha D; Spintzyk S; Sabet A; Wahsh M; Salah T J Esthet Restor Dent; 2018 Jul; 30(4):319-328. PubMed ID: 30113129 [TBL] [Abstract][Full Text] [Related]
8. Comparison of endocrowns made of lithium disilicate glass-ceramic or polymer-infiltrated ceramic networks and direct composite resin restorations: fatigue performance and stress distribution. Dartora G; Rocha Pereira GK; Varella de Carvalho R; Zucuni CP; Valandro LF; Cesar PF; Caldas RA; Bacchi A J Mech Behav Biomed Mater; 2019 Dec; 100():103401. PubMed ID: 31445400 [TBL] [Abstract][Full Text] [Related]
9. Fracture strength, failure type and Weibull characteristics of lithium disilicate and multiphase resin composite endocrowns under axial and lateral forces. Gresnigt MM; Özcan M; van den Houten ML; Schipper L; Cune MS Dent Mater; 2016 May; 32(5):607-14. PubMed ID: 26935018 [TBL] [Abstract][Full Text] [Related]
10. Fracture Resistance of Monolithic Glass-Ceramics Versus Bilayered Zirconia-Based Restorations. Hamza TA; Sherif RM J Prosthodont; 2019 Jan; 28(1):e259-e264. PubMed ID: 29044828 [TBL] [Abstract][Full Text] [Related]
11. Biomechanical behavior of endodontically treated premolars using different preparation designs and CAD/CAM materials. Pedrollo Lise D; Van Ende A; De Munck J; Umeda Suzuki TY; Cardoso Vieira LC; Van Meerbeek B J Dent; 2017 Apr; 59():54-61. PubMed ID: 28214537 [TBL] [Abstract][Full Text] [Related]
12. Mechanical behavior of endocrowns fabricated with different CAD-CAM ceramic systems. Dartora NR; Maurício Moris IC; Poole SF; Bacchi A; Sousa-Neto MD; Silva-Sousa YT; Gomes EA J Prosthet Dent; 2021 Jan; 125(1):117-125. PubMed ID: 32057485 [TBL] [Abstract][Full Text] [Related]
13. Fracture resistance and microleakage of endocrowns utilizing three CAD-CAM blocks. El-Damanhoury HM; Haj-Ali RN; Platt JA Oper Dent; 2015; 40(2):201-10. PubMed ID: 25268039 [TBL] [Abstract][Full Text] [Related]
14. Biomechanical behavior of all-ceramic endocrowns fabricated using CAD/CAM: A systematic review. AlHelal AA J Prosthodont Res; 2024 Jan; 68(1):50-62. PubMed ID: 37286503 [TBL] [Abstract][Full Text] [Related]
15. Biomechanical behavior of endocrown restorations with different CAD-CAM materials: A 3D finite element and in vitro analysis. Zheng Z; He Y; Ruan W; Ling Z; Zheng C; Gai Y; Yan W J Prosthet Dent; 2021 Jun; 125(6):890-899. PubMed ID: 32471627 [TBL] [Abstract][Full Text] [Related]
16. Fracture resistance and failure modes of polymer infiltrated ceramic endocrown restorations with variations in margin design and occlusal thickness. Taha D; Spintzyk S; Schille C; Sabet A; Wahsh M; Salah T; Geis-Gerstorfer J J Prosthodont Res; 2018 Jul; 62(3):293-297. PubMed ID: 29241944 [TBL] [Abstract][Full Text] [Related]
17. Marginal adaptation and fracture strength of endocrowns manufactured with different restorative materials: SEM and mechanical evaluation. Sağlam G; Cengiz S; Karacaer Ö Microsc Res Tech; 2021 Feb; 84(2):284-290. PubMed ID: 32915479 [TBL] [Abstract][Full Text] [Related]
18. Fracture Resistance of Titanium, Zirconia, and Ceramic-Reinforced Polyetheretherketone Implant Abutments Supporting CAD/CAM Monolithic Lithium Disilicate Ceramic Crowns After Aging. Atsü SS; Aksan ME; Bulut AC Int J Oral Maxillofac Implants; 2019; 34(3):622–630. PubMed ID: 30716141 [TBL] [Abstract][Full Text] [Related]
19. Effect of different CAD-CAM materials on the marginal and internal adaptation of endocrown restorations: An in vitro study. El Ghoul WA; Özcan M; Ounsi H; Tohme H; Salameh Z J Prosthet Dent; 2020 Jan; 123(1):128-134. PubMed ID: 31027958 [TBL] [Abstract][Full Text] [Related]
20. Influence of thermo-mechanical aging on fracture resistance and wear of digitally standardized chairside computer-aided-designed/computer-assisted-manufactured restorations. An SJ; Lee H; Ahn JS; Lee JH; Lee HH; Choi YS J Dent; 2023 Mar; 130():104450. PubMed ID: 36773741 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]