These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 31067029)

  • 61. Tuning the properties of copper-based catalysts based on molecular in situ studies of model systems.
    Stacchiola DJ
    Acc Chem Res; 2015 Jul; 48(7):2151-8. PubMed ID: 26103058
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Iron Group Hydrides in Noyori Bifunctional Catalysis.
    Morris RH
    Chem Rec; 2016 Dec; 16(6):2640-2654. PubMed ID: 27524399
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Highly Active Supported Pt Nanocatalysts Synthesized by Alcohol Reduction towards Hydrogenation of Cinnamaldehyde: Synergy of Metal Valence and Hydroxyl Groups.
    Wang Y; He W; Wang L; Yang J; Xiang X; Zhang B; Li F
    Chem Asian J; 2015 Jul; 10(7):1561-70. PubMed ID: 25882904
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Polyhydrido Copper Nanoclusters with a Hollow Icosahedral Core: [Cu
    Barik SK; Huo SC; Wu CY; Chiu TH; Liao JH; Wang X; Kahlal S; Saillard JY; Liu CW
    Chemistry; 2020 Aug; 26(46):10471-10479. PubMed ID: 32378767
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Molecular metal catalysts on supports: organometallic chemistry meets surface science.
    Serna P; Gates BC
    Acc Chem Res; 2014 Aug; 47(8):2612-20. PubMed ID: 25036259
    [TBL] [Abstract][Full Text] [Related]  

  • 66. CNN pincer ruthenium catalysts for hydrogenation and transfer hydrogenation of ketones: experimental and computational studies.
    Baratta W; Baldino S; Calhorda MJ; Costa PJ; Esposito G; Herdtweck E; Magnolia S; Mealli C; Messaoudi A; Mason SA; Veiros LF
    Chemistry; 2014 Oct; 20(42):13603-17. PubMed ID: 25195979
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Thermodynamic stability of ligand-protected metal nanoclusters.
    Taylor MG; Mpourmpakis G
    Nat Commun; 2017 Jul; 8():15988. PubMed ID: 28685777
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Toward Solution Syntheses of the Tetrahedral Au
    Zhang QF; Chen X; Wang LS
    Acc Chem Res; 2018 Sep; 51(9):2159-2168. PubMed ID: 30070827
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Homogeneous Hydrogenation with a Cobalt/Tetraphosphine Catalyst: A Superior Hydride Donor for Polar Double Bonds and
    Duan YN; Du X; Cui Z; Zeng Y; Liu Y; Yang T; Wen J; Zhang X
    J Am Chem Soc; 2019 Dec; 141(51):20424-20433. PubMed ID: 31791120
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Asymmetric hydrogenation in the core of dendrimers.
    He YM; Feng Y; Fan QH
    Acc Chem Res; 2014 Oct; 47(10):2894-906. PubMed ID: 25247446
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The synthesis and characterization of a new diphosphine-protected gold hydride nanocluster.
    Dong J; Gao ZH; Wang LS
    J Chem Phys; 2021 Jul; 155(3):034307. PubMed ID: 34293870
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Site-Selective Hydrogenation of Electron-Poor Alkenes and Dienes Enabled by a Rhodium-Catalyzed Hydride Addition/Protonolysis Mechanism.
    Kong D; Qiqige Q; McNutt W; Paciello R; Schäfer A; Schelwies M; Lundgren RJ
    Angew Chem Int Ed Engl; 2022 Oct; 61(41):e202210601. PubMed ID: 35973967
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Atomically Precise Noble Metal Nanoclusters as Efficient Catalysts: A Bridge between Structure and Properties.
    Du Y; Sheng H; Astruc D; Zhu M
    Chem Rev; 2020 Jan; 120(2):526-622. PubMed ID: 30901198
    [TBL] [Abstract][Full Text] [Related]  

  • 74. CeO2-supported Au38(SR)24 nanocluster catalysts for CO oxidation: a comparison of ligand-on and -off catalysts.
    Nie X; Zeng C; Ma X; Qian H; Ge Q; Xu H; Jin R
    Nanoscale; 2013 Jul; 5(13):5912-8. PubMed ID: 23703111
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Copper-catalyzed asymmetric hydrogenation of aryl and heteroaryl ketones.
    Krabbe SW; Hatcher MA; Bowman RK; Mitchell MB; McClure MS; Johnson JS
    Org Lett; 2013 Sep; 15(17):4560-3. PubMed ID: 23980941
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Structural transformation and catalytic hydrogenation activity of amidinate-protected copper hydride clusters.
    Liu CY; Yuan SF; Wang S; Guan ZJ; Jiang DE; Wang QM
    Nat Commun; 2022 Apr; 13(1):2082. PubMed ID: 35440582
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Freezing copper as a noble metal-like catalyst for preliminary hydrogenation.
    Sun J; Yu J; Ma Q; Meng F; Wei X; Sun Y; Tsubaki N
    Sci Adv; 2018 Dec; 4(12):eaau3275. PubMed ID: 30588490
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The hydrogenation/transfer hydrogenation network: asymmetric hydrogenation of ketones with chiral eta6-arene/N-Tosylethylenediamine-ruthenium(II) catalysts.
    Ohkuma T; Utsumi N; Tsutsumi K; Murata K; Sandoval C; Noyori R
    J Am Chem Soc; 2006 Jul; 128(27):8724-5. PubMed ID: 16819854
    [TBL] [Abstract][Full Text] [Related]  

  • 79. "Polysiloxane-Pd" nanocomposites as recyclable chemoselective hydrogenation catalysts.
    Chauhan BP; Rathore JS; Bandoo T
    J Am Chem Soc; 2004 Jul; 126(27):8493-500. PubMed ID: 15238006
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Alkene Hydrogenations by Soluble Iron Nanocluster Catalysts.
    Gieshoff TN; Chakraborty U; Villa M; Jacobi von Wangelin A
    Angew Chem Int Ed Engl; 2017 Mar; 56(13):3585-3589. PubMed ID: 28233953
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.