These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 31067073)

  • 21. CXCL10 deficiency limits macrophage infiltration, preserves lung matrix, and enables lung growth in bronchopulmonary dysplasia.
    Hirani DV; Thielen F; Mansouri S; Danopoulos S; Vohlen C; Haznedar-Karakaya P; Mohr J; Wilke R; Selle J; Grosch T; Mizik I; Odenthal M; Alvira CM; Kuiper-Makris C; Pryhuber GS; Pallasch C; van Koningsbruggen-Rietschel S; Al-Alam D; Seeger W; Savai R; Dötsch J; Alejandre Alcazar MA
    Inflamm Regen; 2023 Oct; 43(1):52. PubMed ID: 37876024
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Differential expression of long non-coding RNAs in hyperoxia-induced bronchopulmonary dysplasia.
    Bao TP; Wu R; Cheng HP; Cui XW; Tian ZF
    Cell Biochem Funct; 2016 Jul; 34(5):299-309. PubMed ID: 27137150
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pulmonary effects of keratinocyte growth factor in newborn rats exposed to hyperoxia.
    Franco-Montoya ML; Bourbon JR; Durrmeyer X; Lorotte S; Jarreau PH; Delacourt C
    Am J Physiol Lung Cell Mol Physiol; 2009 Nov; 297(5):L965-76. PubMed ID: 19700645
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Systematic analysis of candidate reference genes for gene expression analysis in hyperoxia-based mouse models of bronchopulmonary dysplasia.
    Linge M; Möbius MA; Rösen-Wolff A; Winkler S
    Am J Physiol Lung Cell Mol Physiol; 2021 Oct; 321(4):L718-L725. PubMed ID: 34378408
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fgf10 deficiency is causative for lethality in a mouse model of bronchopulmonary dysplasia.
    Chao CM; Yahya F; Moiseenko A; Tiozzo C; Shrestha A; Ahmadvand N; El Agha E; Quantius J; Dilai S; Kheirollahi V; Jones M; Wilhem J; Carraro G; Ehrhardt H; Zimmer KP; Barreto G; Ahlbrecht K; Morty RE; Herold S; Abellar RG; Seeger W; Schermuly R; Zhang JS; Minoo P; Bellusci S
    J Pathol; 2017 Jan; 241(1):91-103. PubMed ID: 27770432
    [TBL] [Abstract][Full Text] [Related]  

  • 26. AMPK-driven Macrophage Responses Are Autophagy Dependent in Experimental Bronchopulmonary Dysplasia.
    Soni S; Jiang Y; Zhang L; Thakur A; Cataltepe S
    Am J Respir Cell Mol Biol; 2023 Mar; 68(3):279-287. PubMed ID: 36306501
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functional and pathological effects of prolonged hyperoxia in neonatal mice.
    Warner BB; Stuart LA; Papes RA; Wispé JR
    Am J Physiol; 1998 Jul; 275(1):L110-7. PubMed ID: 9688942
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Omeprazole Attenuates Pulmonary Aryl Hydrocarbon Receptor Activation and Potentiates Hyperoxia-Induced Developmental Lung Injury in Newborn Mice.
    Shivanna B; Zhang S; Patel A; Jiang W; Wang L; Welty SE; Moorthy B
    Toxicol Sci; 2015 Nov; 148(1):276-87. PubMed ID: 26272953
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Macrophage-derived IL-6 trans-signalling as a novel target in the pathogenesis of bronchopulmonary dysplasia.
    Hirani D; Alvira CM; Danopoulos S; Milla C; Donato M; Tian L; Mohr J; Dinger K; Vohlen C; Selle J; V Koningsbruggen-Rietschel S; Barbarino V; Pallasch C; Rose-John S; Odenthal M; Pryhuber GS; Mansouri S; Savai R; Seeger W; Khatri P; Al Alam D; Dötsch J; Alejandre Alcazar MA
    Eur Respir J; 2022 Feb; 59(2):. PubMed ID: 34446466
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quercetin attenuates the hyperoxic lung injury in neonatal mice: Implications for Bronchopulmonary dysplasia (BPD).
    Maturu P; Wei-Liang Y; Androutsopoulos VP; Jiang W; Wang L; Tsatsakis AM; Couroucli XI
    Food Chem Toxicol; 2018 Apr; 114():23-33. PubMed ID: 29432836
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Effect of Gender on Mesenchymal Stem Cell (MSC) Efficacy in Neonatal Hyperoxia-Induced Lung Injury.
    Sammour I; Somashekar S; Huang J; Batlahally S; Breton M; Valasaki K; Khan A; Wu S; Young KC
    PLoS One; 2016; 11(10):e0164269. PubMed ID: 27711256
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Caffeine is associated with improved alveolarization and angiogenesis in male mice following hyperoxia induced lung injury.
    Dumpa V; Nielsen L; Wang H; Kumar VHS
    BMC Pulm Med; 2019 Jul; 19(1):138. PubMed ID: 31362742
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sex-related differences in long-term pulmonary outcomes of neonatal hyperoxia in mice.
    Namba F; Ogawa R; Ito M; Watanabe T; Dennery PA; Tamura M
    Exp Lung Res; 2016; 42(2):57-65. PubMed ID: 27070483
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Long-term pulmonary and cardiovascular morbidities of neonatal hyperoxia exposure in mice.
    Menon RT; Shrestha AK; Reynolds CL; Barrios R; Shivanna B
    Int J Biochem Cell Biol; 2018 Jan; 94():119-124. PubMed ID: 29223466
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gene expression profile in newborn rat lungs after two days of recovery of mechanical ventilation.
    Dénervaud V; Gremlich S; Trummer-Menzi E; Schittny JC; Roth-Kleiner M
    Pediatr Res; 2015 Dec; 78(6):641-9. PubMed ID: 26353077
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Activin A contributes to the development of hyperoxia-induced lung injury in neonatal mice.
    Lim R; Muljadi R; Koulaeva E; Vosdoganes P; Chan ST; Acharya R; Gurusinghe S; Ritvos O; Pasternack A; Wallace EM
    Pediatr Res; 2015 Jun; 77(6):749-56. PubMed ID: 25760549
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Connective tissue growth factor antibody therapy attenuates hyperoxia-induced lung injury in neonatal rats.
    Alapati D; Rong M; Chen S; Hehre D; Rodriguez MM; Lipson KE; Wu S
    Am J Respir Cell Mol Biol; 2011 Dec; 45(6):1169-77. PubMed ID: 21659659
    [TBL] [Abstract][Full Text] [Related]  

  • 38. miR-16 inhibits hyperoxia-induced cell apoptosis in human alveolar epithelial cells.
    Li Z; Jiang W; Wu G; Ju X; Wang Y; Liu W
    Mol Med Rep; 2018 Apr; 17(4):5950-5957. PubMed ID: 29484411
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Targeting glycogen synthase kinase-3β to prevent hyperoxia-induced lung injury in neonatal rats.
    Hummler SC; Rong M; Chen S; Hehre D; Alapati D; Wu S
    Am J Respir Cell Mol Biol; 2013 May; 48(5):578-88. PubMed ID: 23328640
    [TBL] [Abstract][Full Text] [Related]  

  • 40. TGF-beta-neutralizing antibodies improve pulmonary alveologenesis and vasculogenesis in the injured newborn lung.
    Nakanishi H; Sugiura T; Streisand JB; Lonning SM; Roberts JD
    Am J Physiol Lung Cell Mol Physiol; 2007 Jul; 293(1):L151-61. PubMed ID: 17400601
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.