These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 31067342)

  • 1. Manganese-Mediated Formic Acid Dehydrogenation.
    Anderson NH; Boncella J; Tondreau AM
    Chemistry; 2019 Aug; 25(45):10557-10560. PubMed ID: 31067342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactivity of Silanes with (
    Anderson NH; Boncella JM; Tondreau AM
    Chemistry; 2017 Oct; 23(55):13617-13622. PubMed ID: 28812322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidative Addition of C-Cl Bonds to a Rh(PONOP) Pincer Complex.
    Longcake A; Lees MR; Senn MS; Chaplin AB
    Organometallics; 2022 Dec; 41(23):3557-3567. PubMed ID: 36533115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and reactivity of new Ni, Pd, and Pt 2,6-bis(di-tert-butylphosphinito)pyridine pincer complexes.
    Kundu S; Brennessel WW; Jones WD
    Inorg Chem; 2011 Oct; 50(19):9443-53. PubMed ID: 21899294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbene-anchored/pendent-imidazolium species as precursors to di-N-heterocyclic carbene-bridged mixed-metal complexes.
    Zamora MT; Ferguson MJ; McDonald R; Cowie M
    Dalton Trans; 2009 Sep; (35):7269-87. PubMed ID: 20449172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Backbone Dehydrogenation in Pyrrole-Based Pincer Ligands.
    Krishnan VM; Davis I; Baker TM; Curran DJ; Arman HD; Neidig ML; Liu A; Tonzetich ZJ
    Inorg Chem; 2018 Aug; 57(15):9544-9553. PubMed ID: 30040391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Manganese as a substitute for rhenium in CO2 reduction catalysts: the importance of acids.
    Smieja JM; Sampson MD; Grice KA; Benson EE; Froehlich JD; Kubiak CP
    Inorg Chem; 2013 Mar; 52(5):2484-91. PubMed ID: 23418912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A convenient method for the generation of {Rh(PNP)}
    Gyton MR; Hood TM; Chaplin AB
    Dalton Trans; 2019 Feb; 48(9):2877-2880. PubMed ID: 30729961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reactivity of Iridium Complexes of a Triphosphorus-Pincer Ligand Based on a Secondary Phosphine. Catalytic Alkane Dehydrogenation and the Origin of Extremely High Activity.
    Gordon BM; Lease N; Emge TJ; Hasanayn F; Goldman AS
    J Am Chem Soc; 2022 Mar; 144(9):4133-4146. PubMed ID: 35224972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of an expanded pincer ligand and its bimetallic coinage metal complexes.
    Delaney AR; Yu LJ; Coote ML; Colebatch AL
    Dalton Trans; 2021 Sep; 50(34):11909-11917. PubMed ID: 34374394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and reactivity of copper(I) complexes containing a bis(imidazolin-2-imine) pincer ligand.
    Petrovic D; Bannenberg T; Randoll S; Jones PG; Tamm M
    Dalton Trans; 2007 Jul; (26):2812-22. PubMed ID: 17592598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A bis(silylene)pyridine pincer ligand can stabilize mononuclear manganese(0) complexes: facile access to isolable analogues of the elusive d
    Kalra S; Pividori D; Fehn D; Dai C; Dong S; Yao S; Zhu J; Meyer K; Driess M
    Chem Sci; 2022 Jul; 13(29):8634-8641. PubMed ID: 35974753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sterically directed nitronate complexes of 2,6-di-tert-butyl-4-nitrophenoxide with Cu(ii) and Zn(ii) and their H-atom transfer reactivity.
    Porter TR; Hayes EC; Kaminsky W; Mayer JM
    Dalton Trans; 2017 Feb; 46(8):2551-2558. PubMed ID: 28154851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and reactivity of iron complexes with a new pyrazine-based pincer ligand, and application in catalytic low-pressure hydrogenation of carbon dioxide.
    Rivada-Wheelaghan O; Dauth A; Leitus G; Diskin-Posner Y; Milstein D
    Inorg Chem; 2015 May; 54(9):4526-38. PubMed ID: 25871886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deciphering the Mechanistic Details of Manganese-Catalyzed Formic Acid Dehydrogenation: Insights from DFT Calculations.
    Johnee Britto N; Jaccob M
    Inorg Chem; 2021 Aug; 60(15):11038-11047. PubMed ID: 34240859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and reactivity of calix[4]arene-supported group 4 imido complexes.
    Dubberley SR; Friedrich A; Willman DA; Mountford P; Radius U
    Chemistry; 2003 Aug; 9(15):3634-54. PubMed ID: 12898691
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards Hydrogen Storage through an Efficient Ruthenium-Catalyzed Dehydrogenation of Formic Acid.
    Xin Z; Zhang J; Sordakis K; Beller M; Du CX; Laurenczy G; Li Y
    ChemSusChem; 2018 Jul; 11(13):2077-2082. PubMed ID: 29722204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synchronous Proton-Hydride Transfer by a Pyrazole-Functionalized Protic Mn(I) Complex in Catalytic Alcohol Dehydrogenative Coupling.
    De S; Ranjan P; Chaurasia V; Pal S; Pal S; Pandey P; Bera JK
    Chemistry; 2023 Oct; 29(58):e202301758. PubMed ID: 37490592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxygenative aromatic ring cleavage of 2-aminophenol with dioxygen catalyzed by a nonheme iron complex: catalytic functional model of 2-aminophenol dioxygenases.
    Chatterjee S; Paine TK
    Inorg Chem; 2015 Feb; 54(4):1720-7. PubMed ID: 25646806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational Study of Formic Acid Dehydrogenation Catalyzed by Al(III)-Bis(imino)pyridine.
    Lu QQ; Yu HZ; Fu Y
    Chemistry; 2016 Mar; 22(13):4584-91. PubMed ID: 26879469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.