These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Water-repelling behavior of the 1-D hematite nano-network. Patra S; Chatterjee S; Das P; Chatterjee S Soft Matter; 2023 Jul; 19(28):5360-5370. PubMed ID: 37409363 [TBL] [Abstract][Full Text] [Related]
3. Electrical nanowelding and bottom-up nano-construction together using nanoscale solder. Peng Y; Cullis T; Inkson BJ J Nanosci Nanotechnol; 2010 Nov; 10(11):7394-7. PubMed ID: 21137943 [TBL] [Abstract][Full Text] [Related]
4. Nanometer-scale modification and welding of silicon and metallic nanowires with a high-intensity electron beam. Xu S; Tian M; Wang J; Xu J; Redwing JM; Chan MH Small; 2005 Dec; 1(12):1221-9. PubMed ID: 17193423 [TBL] [Abstract][Full Text] [Related]
5. Nano-welding and junction formation in hydrogen titanate nanowires by low-energy nitrogen ion irradiation. Dhal S; Chatterjee S; Sarkar S; Tribedi LC; Bapat R; Ayyub P Nanotechnology; 2015 Jun; 26(23):235601. PubMed ID: 25990259 [TBL] [Abstract][Full Text] [Related]
6. Solution-grown 3D Cu2O networks for efficient solar water splitting. Kargar A; Partokia SS; Niu MT; Allameh P; Yang M; May S; Cheung JS; Sun K; Xu K; Wang D Nanotechnology; 2014 May; 25(20):205401. PubMed ID: 24784802 [TBL] [Abstract][Full Text] [Related]
7. Large Pulsed Electron Beam Welded Percolation Networks of Silver Nanowires for Transparent and Flexible Electrodes. Kim J; Nam YS; Song MH; Park HW ACS Appl Mater Interfaces; 2016 Aug; 8(32):20938-45. PubMed ID: 27463783 [TBL] [Abstract][Full Text] [Related]
8. Cuprous Oxide as a Potential Low-Cost Hole-Transport Material for Stable Perovskite Solar Cells. Nejand BA; Ahmadi V; Gharibzadeh S; Shahverdi HR ChemSusChem; 2016 Feb; 9(3):302-13. PubMed ID: 26748959 [TBL] [Abstract][Full Text] [Related]
9. Oriented attachment growth of monocrystalline cuprous oxide nanowires in pure water. Meng J; Hou C; Wang H; Chi Q; Gao Y; Zhu B Nanoscale Adv; 2019 Jun; 1(6):2174-2179. PubMed ID: 36131967 [TBL] [Abstract][Full Text] [Related]
10. Selective Wavelength Plasmonic Flash Light Welding of Silver Nanowires for Transparent Electrodes with High Conductivity. Jang YR; Chung WH; Hwang YT; Hwang HJ; Kim SH; Kim HS ACS Appl Mater Interfaces; 2018 Jul; 10(28):24099-24107. PubMed ID: 29940106 [TBL] [Abstract][Full Text] [Related]
11. Facile synthesis of cuprous oxide nanowires decorated graphene oxide nanosheets nanocomposites and its application in label-free electrochemical immunosensor. Wang H; Zhang Y; Wang Y; Ma H; Du B; Wei Q Biosens Bioelectron; 2017 Jan; 87():745-751. PubMed ID: 27649330 [TBL] [Abstract][Full Text] [Related]
12. Facile fabrication of electrolyte-gated single-crystalline cuprous oxide nanowire field-effect transistors. Stoesser A; von Seggern F; Purohit S; Nasr B; Kruk R; Dehm S; Di Wang ; Hahn H; Dasgupta S Nanotechnology; 2016 Oct; 27(41):415205. PubMed ID: 27609560 [TBL] [Abstract][Full Text] [Related]
13. Cold welding of ultrathin gold nanowires. Lu Y; Huang JY; Wang C; Sun S; Lou J Nat Nanotechnol; 2010 Mar; 5(3):218-24. PubMed ID: 20154688 [TBL] [Abstract][Full Text] [Related]
14. Electron Beam Irradiation-Induced Deoxidation and Atomic Flattening on the Copper Surface. Lin TY; Lee SK; Huang GM; Huang CW; Tai KL; Huang CY; Lo YC; Wu WW ACS Appl Mater Interfaces; 2019 Oct; 11(43):40909-40915. PubMed ID: 31573187 [TBL] [Abstract][Full Text] [Related]
15. Unraveling the solvent induced welding of silver nanowires for high performance flexible transparent electrodes. Zhang K; Li J; Fang Y; Luo B; Zhang Y; Li Y; Zhou J; Hu B Nanoscale; 2018 Jul; 10(27):12981-12990. PubMed ID: 29694477 [TBL] [Abstract][Full Text] [Related]
16. Formation of tungsten oxide nanowires by ion irradiation and vacuum annealing. Zheng XD; Ren F; Wu HY; Qin WJ; Jiang CZ Nanotechnology; 2018 Apr; 29(15):155301. PubMed ID: 29384492 [TBL] [Abstract][Full Text] [Related]
17. Oxide Nanocrystal Model Catalysts. Huang W Acc Chem Res; 2016 Mar; 49(3):520-7. PubMed ID: 26938790 [TBL] [Abstract][Full Text] [Related]
18. The role of cuprous oxide seeds in the one-pot and seeded syntheses of copper nanowires. Ye S; Rathmell AR; Ha YC; Wilson AR; Wiley BJ Small; 2014 May; 10(9):1771-8. PubMed ID: 24616369 [TBL] [Abstract][Full Text] [Related]
19. A bottom-up process of self-formation of highly conductive titanium oxide (TiO) nanowires on reduced SrTiO Wrana D; Rodenbücher C; Jany BR; Kryshtal O; Cempura G; Kruk A; Indyka P; Szot K; Krok F Nanoscale; 2018 Dec; 11(1):89-97. PubMed ID: 30226243 [TBL] [Abstract][Full Text] [Related]
20. Formation of hybrid structures: copper oxide nanocrystals templated on ultralong copper nanowires for open network sensing at room temperature. Kevin M; Ong WL; Lee GH; Ho GW Nanotechnology; 2011 Jun; 22(23):235701. PubMed ID: 21474867 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]