These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 31067912)
1. Separable resolution-of-the-identity with all-electron Gaussian bases: Application to cubic-scaling RPA. Duchemin I; Blase X J Chem Phys; 2019 May; 150(17):174120. PubMed ID: 31067912 [TBL] [Abstract][Full Text] [Related]
2. Benchmarking the accuracy of the separable resolution of the identity approach for correlated methods in the numeric atom-centered orbitals framework. Delesma FA; Leucke M; Golze D; Rinke P J Chem Phys; 2024 Jan; 160(2):. PubMed ID: 38205851 [TBL] [Abstract][Full Text] [Related]
3. Electron Correlation in the Condensed Phase from a Resolution of Identity Approach Based on the Gaussian and Plane Waves Scheme. Del Ben M; Hutter J; VandeVondele J J Chem Theory Comput; 2013 Jun; 9(6):2654-71. PubMed ID: 26583860 [TBL] [Abstract][Full Text] [Related]
4. Large-Scale Cubic-Scaling Random Phase Approximation Correlation Energy Calculations Using a Gaussian Basis. Wilhelm J; Seewald P; Del Ben M; Hutter J J Chem Theory Comput; 2016 Dec; 12(12):5851-5859. PubMed ID: 27779863 [TBL] [Abstract][Full Text] [Related]
5. Fast computation of molecular random phase approximation correlation energies using resolution of the identity and imaginary frequency integration. Eshuis H; Yarkony J; Furche F J Chem Phys; 2010 Jun; 132(23):234114. PubMed ID: 20572696 [TBL] [Abstract][Full Text] [Related]
6. Toward Pair Atomic Density Fitting for Correlation Energies with Benchmark Accuracy. Spadetto E; Philipsen PHT; Förster A; Visscher L J Chem Theory Comput; 2023 Mar; 19(5):1499-1516. PubMed ID: 36787494 [TBL] [Abstract][Full Text] [Related]
7. Analytical First-Order Molecular Properties and Forces within the Adiabatic Connection Random Phase Approximation. Burow AM; Bates JE; Furche F; Eshuis H J Chem Theory Comput; 2014 Jan; 10(1):180-94. PubMed ID: 26579901 [TBL] [Abstract][Full Text] [Related]
9. Systematically Improvable Tensor Hypercontraction: Interpolative Separable Density-Fitting for Molecules Applied to Exact Exchange, Second- and Third-Order Møller-Plesset Perturbation Theory. Lee J; Lin L; Head-Gordon M J Chem Theory Comput; 2020 Jan; 16(1):243-263. PubMed ID: 31794667 [TBL] [Abstract][Full Text] [Related]
10. Low-Scaling Algorithm for the Random Phase Approximation Using Tensor Hypercontraction with k-point Sampling. Yeh CN; Morales MA J Chem Theory Comput; 2023 Sep; 19(18):6197-6207. PubMed ID: 37624575 [TBL] [Abstract][Full Text] [Related]
11. Linear-scaling explicitly correlated treatment of solids: periodic local MP2-F12 method. Usvyat D J Chem Phys; 2013 Nov; 139(19):194101. PubMed ID: 24320310 [TBL] [Abstract][Full Text] [Related]
12. General orbital invariant MP2-F12 theory. Werner HJ; Adler TB; Manby FR J Chem Phys; 2007 Apr; 126(16):164102. PubMed ID: 17477584 [TBL] [Abstract][Full Text] [Related]
13. Sparse maps—A systematic infrastructure for reduced-scaling electronic structure methods. I. An efficient and simple linear scaling local MP2 method that uses an intermediate basis of pair natural orbitals. Pinski P; Riplinger C; Valeev EF; Neese F J Chem Phys; 2015 Jul; 143(3):034108. PubMed ID: 26203015 [TBL] [Abstract][Full Text] [Related]
14. Resolution of identity approach for the Kohn-Sham correlation energy within the exact-exchange random-phase approximation. Bleiziffer P; Hesselmann A; Görling A J Chem Phys; 2012 Apr; 136(13):134102. PubMed ID: 22482535 [TBL] [Abstract][Full Text] [Related]
15. Straightforward and Accurate Automatic Auxiliary Basis Set Generation for Molecular Calculations with Atomic Orbital Basis Sets. Lehtola S J Chem Theory Comput; 2021 Nov; 17(11):6886-6900. PubMed ID: 34614349 [TBL] [Abstract][Full Text] [Related]
16. Localized Resolution of Identity Approach to the Analytical Gradients of Random-Phase Approximation Ground-State Energy: Algorithm and Benchmarks. Tahir MN; Zhu T; Shang H; Li J; Blum V; Ren X J Chem Theory Comput; 2022 Sep; 18(9):5297-5311. PubMed ID: 35959556 [TBL] [Abstract][Full Text] [Related]
17. Parallel and Low-Order Scaling Implementation of Hartree-Fock Exchange Using Local Density Fitting. Köppl C; Werner HJ J Chem Theory Comput; 2016 Jul; 12(7):3122-34. PubMed ID: 27267488 [TBL] [Abstract][Full Text] [Related]
18. Basis-Set-Error-Free Random-Phase Approximation Correlation Energies for Atoms Based on the Sternheimer Equation. Peng H; Yang S; Jiang H; Weng H; Ren X J Chem Theory Comput; 2023 Oct; 19(20):7199-7214. PubMed ID: 37811855 [TBL] [Abstract][Full Text] [Related]
19. Efficient calculation of beyond RPA correlation energies in the dielectric matrix formalism. Beuerle M; Graf D; Schurkus HF; Ochsenfeld C J Chem Phys; 2018 May; 148(20):204104. PubMed ID: 29865814 [TBL] [Abstract][Full Text] [Related]
20. Low-Scaling Self-Consistent Minimization of a Density Matrix Based Random Phase Approximation Method in the Atomic Orbital Space. Graf D; Beuerle M; Ochsenfeld C J Chem Theory Comput; 2019 Aug; 15(8):4468-4477. PubMed ID: 31368702 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]