These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 31067913)

  • 1. On the dynamics of reaction coordinates in classical, time-dependent, many-body processes.
    Meyer H; Voigtmann T; Schilling T
    J Chem Phys; 2019 May; 150(17):174118. PubMed ID: 31067913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microscopic derivation of coarse-grained, energy-conserving generalized Langevin dynamics.
    Izvekov S
    J Chem Phys; 2019 Sep; 151(10):104109. PubMed ID: 31521077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mori-Zwanzig projection operator formalism: Particle-based coarse-grained dynamics of open classical systems far from equilibrium.
    Izvekov S
    Phys Rev E; 2021 Aug; 104(2-1):024121. PubMed ID: 34525637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comments on the validity of the non-stationary generalized Langevin equation as a coarse-grained evolution equation for microscopic stochastic dynamics.
    Glatzel F; Schilling T
    J Chem Phys; 2021 May; 154(17):174107. PubMed ID: 34241070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microscopic derivation of particle-based coarse-grained dynamics: Exact expression for memory function.
    Izvekov S
    J Chem Phys; 2017 Mar; 146(12):124109. PubMed ID: 28388110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Derivation of the nonequilibrium generalized Langevin equation from a time-dependent many-body Hamiltonian.
    Netz RR
    Phys Rev E; 2024 Jul; 110(1-1):014123. PubMed ID: 39160956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mori-Zwanzig theory for dissipative forces in coarse-grained dynamics in the Markov limit.
    Izvekov S
    Phys Rev E; 2017 Jan; 95(1-1):013303. PubMed ID: 28208451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microscopic derivation of particle-based coarse-grained dynamics.
    Izvekov S
    J Chem Phys; 2013 Apr; 138(13):134106. PubMed ID: 23574207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mori-Zwanzig projection operator formalism for far-from-equilibrium systems with time-dependent Hamiltonians.
    Te Vrugt M; Wittkowski R
    Phys Rev E; 2019 Jun; 99(6-1):062118. PubMed ID: 31330634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of projection operator method to coarse-grained dynamics with transient potential.
    Uneyama T
    Phys Rev E; 2022 Apr; 105(4-1):044117. PubMed ID: 35590667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cross-correlation corrected friction in generalized Langevin models: Application to the continuous Asakura-Oosawa model.
    Klippenstein V; van der Vegt NFA
    J Chem Phys; 2022 Jul; 157(4):044103. PubMed ID: 35922348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generalized Langevin dynamics simulation with non-stationary memory kernels: How to make noise.
    Widder C; Koch F; Schilling T
    J Chem Phys; 2022 Nov; 157(19):194107. PubMed ID: 36414449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the non-stationary generalized Langevin equation.
    Meyer H; Voigtmann T; Schilling T
    J Chem Phys; 2017 Dec; 147(21):214110. PubMed ID: 29221405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compatible observable decompositions for coarse-grained representations of real molecular systems.
    Dannenhoffer-Lafage T; Wagner JW; Durumeric AEP; Voth GA
    J Chem Phys; 2019 Oct; 151(13):134115. PubMed ID: 31594316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Derivation of the generalized Langevin equation in nonstationary environments.
    Kawai S; Komatsuzaki T
    J Chem Phys; 2011 Mar; 134(11):114523. PubMed ID: 21428648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First-principle approach to rescale the dynamics of simulated coarse-grained macromolecular liquids.
    Lyubimov I; Guenza MG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 1):031801. PubMed ID: 22060394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generalized Langevin equation with a nonlinear potential of mean force and nonlinear memory friction from a hybrid projection scheme.
    Ayaz C; Scalfi L; Dalton BA; Netz RR
    Phys Rev E; 2022 May; 105(5-1):054138. PubMed ID: 35706310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effective Hamiltonians derived from equation-of-motion coupled-cluster wave functions: Theory and application to the Hubbard and Heisenberg Hamiltonians.
    Pokhilko P; Krylov AI
    J Chem Phys; 2020 Mar; 152(9):094108. PubMed ID: 33480739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling real dynamics in the coarse-grained representation of condensed phase systems.
    Izvekov S; Voth GA
    J Chem Phys; 2006 Oct; 125(15):151101. PubMed ID: 17059230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Derivation of quantum langevin equation from an explicit molecule-medium treatment in interaction picture.
    Datta SN
    J Phys Chem A; 2005 Dec; 109(50):11417-23. PubMed ID: 16354030
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.