These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. An idealized model for nonequilibrium dynamics in molecular systems. Vogt M; Hernandez R J Chem Phys; 2005 Oct; 123(14):144109. PubMed ID: 16238376 [TBL] [Abstract][Full Text] [Related]
23. On the representability problem and the physical meaning of coarse-grained models. Wagner JW; Dama JF; Durumeric AE; Voth GA J Chem Phys; 2016 Jul; 145(4):044108. PubMed ID: 27475349 [TBL] [Abstract][Full Text] [Related]
25. Time-Dependent Pseudo-Hermitian Hamiltonians and a Hidden Geometric Aspect of Quantum Mechanics. Mostafazadeh A Entropy (Basel); 2020 Apr; 22(4):. PubMed ID: 33286245 [TBL] [Abstract][Full Text] [Related]
26. Temperature-driven irreversible generalized Langevin equation can capture the nonequilibrium dynamics of two dissipated coupled oscillators. Popov AV; Hernandez R Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032145. PubMed ID: 24125251 [TBL] [Abstract][Full Text] [Related]
27. Application of the projection operator formalism to non-hamiltonian dynamics. Xing J; Kim KS J Chem Phys; 2011 Jan; 134(4):044132. PubMed ID: 21280712 [TBL] [Abstract][Full Text] [Related]
28. The multiscale coarse-graining method. III. A test of pairwise additivity of the coarse-grained potential and of new basis functions for the variational calculation. Das A; Andersen HC J Chem Phys; 2009 Jul; 131(3):034102. PubMed ID: 19624176 [TBL] [Abstract][Full Text] [Related]
29. Data-driven molecular modeling with the generalized Langevin equation. Grogan F; Lei H; Li X; Baker NA J Comput Phys; 2020 Oct; 418():. PubMed ID: 32952214 [TBL] [Abstract][Full Text] [Related]
30. The derivation and approximation of coarse-grained dynamics from Langevin dynamics. Ma L; Li X; Liu C J Chem Phys; 2016 Nov; 145(20):204117. PubMed ID: 27908121 [TBL] [Abstract][Full Text] [Related]
31. Electronically nonadiabatic dynamics via semiclassical initial value methods. Miller WH J Phys Chem A; 2009 Feb; 113(8):1405-15. PubMed ID: 19170628 [TBL] [Abstract][Full Text] [Related]
32. Equation of motion for coarse-grained simulation based on microscopic description. Kinjo T; Hyodo SA Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 1):051109. PubMed ID: 17677024 [TBL] [Abstract][Full Text] [Related]
34. Data-driven coarse-grained modeling of non-equilibrium systems. Wang S; Ma Z; Pan W Soft Matter; 2021 Jul; 17(26):6404-6412. PubMed ID: 34132317 [TBL] [Abstract][Full Text] [Related]
35. Driven Open Quantum Systems and Floquet Stroboscopic Dynamics. Restrepo S; Cerrillo J; Bastidas VM; Angelakis DG; Brandes T Phys Rev Lett; 2016 Dec; 117(25):250401. PubMed ID: 28036226 [TBL] [Abstract][Full Text] [Related]
36. On the proper derivation of the Floquet-based quantum classical Liouville equation and surface hopping describing a molecule or material subject to an external field. Chen HT; Zhou Z; Subotnik JE J Chem Phys; 2020 Jul; 153(4):044116. PubMed ID: 32752688 [TBL] [Abstract][Full Text] [Related]
38. Specifying the Unitary Evolution of a Qudit for a General Nonstationary Hamiltonian via the Generalized Gell-Mann Representation. Loubenets ER; Käding C Entropy (Basel); 2020 May; 22(5):. PubMed ID: 33286293 [TBL] [Abstract][Full Text] [Related]
39. Coarse-grained single-particle dynamics in two-dimensional solids and liquids. Silbermann JR; Schoen M; Klapp SH Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 1):011201. PubMed ID: 18763941 [TBL] [Abstract][Full Text] [Related]
40. Microscopic theory of nuclear fission: a review. Schunck N; Robledo LM Rep Prog Phys; 2016 Nov; 79(11):116301. PubMed ID: 27727148 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]