These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 31067925)

  • 1. Effective property evaluation and analysis of three-dimensional periodic lattices and composites through Bloch-wave homogenization.
    Patil GU; Matlack KH
    J Acoust Soc Am; 2019 Mar; 145(3):1259. PubMed ID: 31067925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wave propagation in two-dimensional periodic lattices.
    Phani AS; Woodhouse J; Fleck NA
    J Acoust Soc Am; 2006 Apr; 119(4):1995-2005. PubMed ID: 16642813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical investigation of the effective mechanical properties and local stress distributions of TPMS-based and strut-based lattices for biomedical applications.
    Chatzigeorgiou C; Piotrowski B; Chemisky Y; Laheurte P; Meraghni F
    J Mech Behav Biomed Mater; 2022 Feb; 126():105025. PubMed ID: 34920324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effective Mechanical Properties of Periodic Cellular Solids with Generic Bravais Lattice Symmetry via Asymptotic Homogenization.
    Rajakareyar P; ElSayed MSA; Abo El Ella H; Matida E
    Materials (Basel); 2023 Dec; 16(24):. PubMed ID: 38138704
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering three-dimensional labyrinthine fractal acoustic metamaterials with low-frequency multi-band sound suppression.
    Man X; Xia B; Luo Z; Liu J; Li K; Nie Y
    J Acoust Soc Am; 2021 Jan; 149(1):308. PubMed ID: 33514175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimal design of lattice structures for controllable extremal band gaps.
    Choi MJ; Oh MH; Koo B; Cho S
    Sci Rep; 2019 Jul; 9(1):9976. PubMed ID: 31292469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elastic Wave Propagation Control in Porous and Finitely Deformed Locally Resonant Nacre-like Metamaterials.
    De Maio U; Greco F; Nevone Blasi P; Pranno A; Sgambitterra G
    Materials (Basel); 2024 Feb; 17(3):. PubMed ID: 38591542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metamaterials of Auxetic Geometry for Seismic Energy Absorption.
    Saddek AA; Lin TK; Chang WK; Chen CH; Chang KC
    Materials (Basel); 2023 Aug; 16(15):. PubMed ID: 37570201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modal Response Improvement of Periodic Lattice Materials with a Shear Modulus-Based FE Homogenized Model.
    Luo T; Wang L; Liu F; Chen M; Li J
    Materials (Basel); 2024 Mar; 17(6):. PubMed ID: 38541468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical Strength of Triply Periodic Minimal Surface Lattices Subjected to Three-Point Bending.
    Lin ZH; Pan JH; Li HY
    Polymers (Basel); 2022 Jul; 14(14):. PubMed ID: 35890660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Composite 3D-printed metastructures for low-frequency and broadband vibration absorption.
    Matlack KH; Bauhofer A; Krödel S; Palermo A; Daraio C
    Proc Natl Acad Sci U S A; 2016 Jul; 113(30):8386-90. PubMed ID: 27410042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of Hierarchical Architected Lattices for Enhanced Energy Absorption.
    Al Nashar M; Sutradhar A
    Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-reciprocal wave propagation in mechanically-modulated continuous elastic metamaterials.
    Goldsberry BM; Wallen SP; Haberman MR
    J Acoust Soc Am; 2019 Jul; 146(1):782. PubMed ID: 31370598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micropolar continuum modelling of bi-dimensional tetrachiral lattices.
    Chen Y; Liu XN; Hu GK; Sun QP; Zheng QS
    Proc Math Phys Eng Sci; 2014 May; 470(2165):20130734. PubMed ID: 24808754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three dimensional image-based simulation of ultrasonic wave propagation in polycrystalline metal using phase-field modeling.
    Nakahata K; Sugahara H; Barth M; Köhler B; Schubert F
    Ultrasonics; 2016 Apr; 67():18-29. PubMed ID: 26773789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automorphic Bloch theorems for hyperbolic lattices.
    Maciejko J; Rayan S
    Proc Natl Acad Sci U S A; 2022 Mar; 119(9):. PubMed ID: 35217612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Homogenization of periodic 1-3 piezocomposite using wave propagation: Toward an experimental method.
    Balé A; Rouffaud R; Levassort F; Brenner R; Hladky-Hennion AC
    J Acoust Soc Am; 2021 May; 149(5):3122. PubMed ID: 34241119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lasing Action from Quasi-Propagating Modes.
    Tan MJH; Park JE; Freire-Fernández F; Guan J; Juarez XG; Odom TW
    Adv Mater; 2022 Aug; 34(34):e2203999. PubMed ID: 35734937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Band Dynamics of Multimode Resonant Nanophotonic Lattices with Adjustable Liquid Interfaces.
    Razmjooei N; Magnusson R
    Nanomaterials (Basel); 2023 Aug; 13(16):. PubMed ID: 37630935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Band Theory and Boundary Modes of High-Dimensional Representations of Infinite Hyperbolic Lattices.
    Cheng N; Serafin F; McInerney J; Rocklin Z; Sun K; Mao X
    Phys Rev Lett; 2022 Aug; 129(8):088002. PubMed ID: 36053689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.