These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 31067954)

  • 1. Sound pressure distribution within human ear canals: II. Reverse mechanical stimulation.
    Ravicz ME; Cheng JT; Rosowski JJ
    J Acoust Soc Am; 2019 Mar; 145(3):1569. PubMed ID: 31067954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sound pressure distribution within natural and artificial human ear canals: forward stimulation.
    Ravicz ME; Tao Cheng J; Rosowski JJ
    J Acoust Soc Am; 2014 Dec; 136(6):3132. PubMed ID: 25480061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Effect of Ear Canal Orientation on Tympanic Membrane Motion and the Sound Field Near the Tympanic Membrane.
    Cheng JT; Ravicz M; Guignard J; Furlong C; Rosowski JJ
    J Assoc Res Otolaryngol; 2015 Aug; 16(4):413-32. PubMed ID: 25910607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Factors contributing to bone conduction: the outer ear.
    Stenfelt S; Wild T; Hato N; Goode RL
    J Acoust Soc Am; 2003 Feb; 113(2):902-13. PubMed ID: 12597184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sound pressure distribution and power flow within the gerbil ear canal from 100 Hz to 80 kHz.
    Ravicz ME; Olson ES; Rosowski JJ
    J Acoust Soc Am; 2007 Oct; 122(4):2154-73. PubMed ID: 17902852
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using average correction factors to improve the estimated sound pressure level near the tympanic membrane.
    LaRae Recker K; Zhang T; Lin W
    J Am Acad Audiol; 2012 Oct; 23(9):733-50. PubMed ID: 23072965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sound propagation in the ear canal and coupling to the eardrum, with measurements on model systems.
    Stinson MR; Khanna SM
    J Acoust Soc Am; 1989 Jun; 85(6):2481-91. PubMed ID: 2745873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurements of bone-conducted sound in the chinchilla external ear.
    Bowers P; Ravicz ME; Rosowski JJ
    Hear Res; 2024 Jan; 441():108926. PubMed ID: 38096706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. External and middle ear sound pressure distribution and acoustic coupling to the tympanic membrane.
    Bergevin C; Olson ES
    J Acoust Soc Am; 2014 Mar; 135(3):1294-312. PubMed ID: 24606269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chinchilla middle-ear admittance and sound power: high-frequency estimates and effects of inner-ear modifications.
    Ravicz ME; Rosowski JJ
    J Acoust Soc Am; 2012 Oct; 132(4):2437-54. PubMed ID: 23039439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tympanic membrane surface motions in forward and reverse middle ear transmissions.
    Cheng JT; Maftoon N; Guignard J; Ravicz ME; Rosowski J
    J Acoust Soc Am; 2019 Jan; 145(1):272. PubMed ID: 30710932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Outer ear canal sound pressure and bone vibration measurement in SSD and CHL patients using a transcutaneous bone conduction instrument.
    Ghoncheh M; Lilli G; Lenarz T; Maier H
    Hear Res; 2016 Oct; 340():161-168. PubMed ID: 26723102
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Maturation of the occlusion effect: a bone conduction auditory steady state response study in infants and adults with normal hearing.
    Small SA; Hu N
    Ear Hear; 2011; 32(6):708-19. PubMed ID: 21617531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ear canal pressure variations versus negative middle ear pressure: comparison using distortion product otoacoustic emission measurement in humans.
    Sun XM
    Ear Hear; 2012; 33(1):69-78. PubMed ID: 21747284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wave motion on the surface of the human tympanic membrane: holographic measurement and modeling analysis.
    Cheng JT; Hamade M; Merchant SN; Rosowski JJ; Harrington E; Furlong C
    J Acoust Soc Am; 2013 Feb; 133(2):918-37. PubMed ID: 23363110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of eardrum acoustic pressure and of ear canal length from remote points in the canal.
    Chan JC; Geisler CD
    J Acoust Soc Am; 1990 Mar; 87(3):1237-47. PubMed ID: 2324390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of an analytic horn equation approach and a boundary element method for the calculation of sound fields in the human ear canal.
    Stinson MR; Daigle GA
    J Acoust Soc Am; 2005 Oct; 118(4):2405-11. PubMed ID: 16266162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of tympanic-membrane orientation on acoustic ear-canal quantities: A finite-element analysis.
    Nørgaard KM; Motallebzadeh H; Puria S
    J Acoust Soc Am; 2024 Apr; 155(4):2769-2785. PubMed ID: 38662609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sound field estimation near the tympanic membrane using area-distance measurements in the ear canal.
    Keefe DH
    J Acoust Soc Am; 2020 Sep; 148(3):1193. PubMed ID: 33003862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Specification of the acoustical input to the ear at high frequencies.
    Khanna SM; Stinson MR
    J Acoust Soc Am; 1985 Feb; 77(2):577-89. PubMed ID: 3973229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.