These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
562 related articles for article (PubMed ID: 31068014)
1. Advances in genomic, transcriptomic, proteomic, and metabolomic approaches to study biotic stress in fruit crops. Li T; Wang YH; Liu JX; Feng K; Xu ZS; Xiong AS Crit Rev Biotechnol; 2019 Aug; 39(5):680-692. PubMed ID: 31068014 [TBL] [Abstract][Full Text] [Related]
2. Enhancement of Plant Productivity in the Post-Genomics Era. Thao NP; Tran LS Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678 [TBL] [Abstract][Full Text] [Related]
3. Omics and CRISPR-Cas9 Approaches for Molecular Insight, Functional Gene Analysis, and Stress Tolerance Development in Crops. Razzaq MK; Aleem M; Mansoor S; Khan MA; Rauf S; Iqbal S; Siddique KHM Int J Mol Sci; 2021 Jan; 22(3):. PubMed ID: 33525517 [TBL] [Abstract][Full Text] [Related]
4. Genomic Approaches for Improvement of Tropical Fruits: Fruit Quality, Shelf Life and Nutrient Content. Mathiazhagan M; Chidambara B; Hunashikatti LR; Ravishankar KV Genes (Basel); 2021 Nov; 12(12):. PubMed ID: 34946829 [TBL] [Abstract][Full Text] [Related]
5. Integrating multi-omics data for crop improvement. Scossa F; Alseekh S; Fernie AR J Plant Physiol; 2021 Feb; 257():153352. PubMed ID: 33360148 [TBL] [Abstract][Full Text] [Related]
7. Olive Fruit Development and Ripening: Break on through to the "-Omics" Side. Skodra C; Titeli VS; Michailidis M; Bazakos C; Ganopoulos I; Molassiotis A; Tanou G Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34071656 [TBL] [Abstract][Full Text] [Related]
8. Biotechnological approaches to study plant responses to stress. Pérez-Clemente RM; Vives V; Zandalinas SI; López-Climent MF; Muñoz V; Gómez-Cadenas A Biomed Res Int; 2013; 2013():654120. PubMed ID: 23509757 [TBL] [Abstract][Full Text] [Related]
9. A comprehensive and conceptual overview of omics-based approaches for enhancing the resilience of vegetable crops against abiotic stresses. Mangal V; Lal MK; Tiwari RK; Altaf MA; Sood S; Gahlaut V; Bhatt A; Thakur AK; Kumar R; Bhardwaj V; Kumar V; Singh B; Singh R; Kumar D Planta; 2023 Mar; 257(4):80. PubMed ID: 36913037 [TBL] [Abstract][Full Text] [Related]
10. Green systems biology - From single genomes, proteomes and metabolomes to ecosystems research and biotechnology. Weckwerth W J Proteomics; 2011 Dec; 75(1):284-305. PubMed ID: 21802534 [TBL] [Abstract][Full Text] [Related]
11. Proteomics of Reproductive Development, Fruit Ripening, and Stress Responses in Tomato. Momo J; Rawoof A; Kumar A; Islam K; Ahmad I; Ramchiary N J Agric Food Chem; 2023 Jan; 71(1):65-95. PubMed ID: 36584279 [TBL] [Abstract][Full Text] [Related]
12. Plant proteomic research for improvement of food crops under stresses: a review. Mustafa G; Komatsu S Mol Omics; 2021 Dec; 17(6):860-880. PubMed ID: 34870299 [TBL] [Abstract][Full Text] [Related]
13. Network analysis of postharvest senescence process in citrus fruits revealed by transcriptomic and metabolomic profiling. Ding Y; Chang J; Ma Q; Chen L; Liu S; Jin S; Han J; Xu R; Zhu A; Guo J; Luo Y; Xu J; Xu Q; Zeng Y; Deng X; Cheng Y Plant Physiol; 2015 May; 168(1):357-76. PubMed ID: 25802366 [TBL] [Abstract][Full Text] [Related]
14. Integrated genomics and molecular breeding approaches for dissecting the complex quantitative traits in crop plants. Kujur A; Saxena MS; Bajaj D; Laxmi ; Parida SK J Biosci; 2013 Dec; 38(5):971-87. PubMed ID: 24296899 [TBL] [Abstract][Full Text] [Related]
15. Multi-omics approaches for strategic improvement of stress tolerance in underutilized crop species: A climate change perspective. Muthamilarasan M; Singh NK; Prasad M Adv Genet; 2019; 103():1-38. PubMed ID: 30904092 [TBL] [Abstract][Full Text] [Related]
16. FEAtl: a comprehensive web-based expression atlas for functional genomics in tropical and subtropical fruit crops. Roy A; Chaurasia H; Kumar B; Kumari N; Jaiswal S; Srivastava M; Iquebal MA; Angadi UB; Kumar D BMC Plant Biol; 2024 Sep; 24(1):890. PubMed ID: 39343895 [TBL] [Abstract][Full Text] [Related]
17. Transcriptomic and proteomic analyses of mulberry (Morus atropurpurea) fruit response to Ciboria carunculoides. Dai F; Wang Z; Li Z; Luo G; Wang Y; Tang C J Proteomics; 2019 Feb; 193():142-153. PubMed ID: 30315889 [TBL] [Abstract][Full Text] [Related]
18. Proteomics in the fruit tree science arena: new insights into fruit defense, development, and ripening. Molassiotis A; Tanou G; Filippou P; Fotopoulos V Proteomics; 2013 Jun; 13(12-13):1871-84. PubMed ID: 23986917 [TBL] [Abstract][Full Text] [Related]
19. Biotic stress triggered small RNA and RNAi defense response in plants. Ali M; Javaid A; Naqvi SH; Batcho A; Kayani WK; Lal A; Sajid IA; Nwogwugwu JO Mol Biol Rep; 2020 Jul; 47(7):5511-5522. PubMed ID: 32562176 [TBL] [Abstract][Full Text] [Related]
20. Current Status of Proteomic Studies on Defense Responses in Rice. Chen X; Bhadauria V; Ma B Curr Issues Mol Biol; 2016; 19():7-12. PubMed ID: 26364119 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]