These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

562 related articles for article (PubMed ID: 31068014)

  • 21. Proteomics in commercial crops: An overview.
    Tan BC; Lim YS; Lau SE
    J Proteomics; 2017 Oct; 169():176-188. PubMed ID: 28546092
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Entailing the Next-Generation Sequencing and Metabolome for Sustainable Agriculture by Improving Plant Tolerance.
    Ashraf MF; Hou D; Hussain Q; Imran M; Pei J; Ali M; Shehzad A; Anwar M; Noman A; Waseem M; Lin X
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35054836
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Omics Approach to Identify Factors Involved in Brassica Disease Resistance.
    Francisco M; Soengas P; Velasco P; Bhadauria V; Cartea ME; Rodríguez VM
    Curr Issues Mol Biol; 2016; 19():31-42. PubMed ID: 26363709
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genomic resources in fruit plants: an assessment of current status.
    Rai MK; Shekhawat NS
    Crit Rev Biotechnol; 2015; 35(4):438-47. PubMed ID: 24649925
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Protein and Proteome Atlas for Plants under Stresses: New Highlights and Ways for Integrated Omics in Post-Genomics Era.
    Wang X
    Int J Mol Sci; 2019 Oct; 20(20):. PubMed ID: 31640274
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Omics Path to Increasing Productivity in Less-Studied Crops Under Changing Climate-Lentil a Case Study.
    Tiwari M; Singh B; Min D; Jagadish SVK
    Front Plant Sci; 2022; 13():813985. PubMed ID: 35615121
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Advances in genomics and genome editing for breeding next generation of fruit and nut crops.
    Savadi S; Mangalassery S; Sandesh MS
    Genomics; 2021 Nov; 113(6):3718-3734. PubMed ID: 34517092
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Plant exomics: concepts, applications and methodologies in crop improvement.
    Hashmi U; Shafqat S; Khan F; Majid M; Hussain H; Kazi AG; John R; Ahmad P
    Plant Signal Behav; 2015; 10(1):e976152. PubMed ID: 25482786
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Understanding the Proteomes of Plant Development and Stress Responses in
    Yadav BG; Aakanksha ; Kumar R; Yadava SK; Kumar A; Ramchiary N
    J Proteome Res; 2023 Mar; 22(3):660-680. PubMed ID: 36786770
    [No Abstract]   [Full Text] [Related]  

  • 30. Orphan legume crops enter the genomics era!
    Varshney RK; Close TJ; Singh NK; Hoisington DA; Cook DR
    Curr Opin Plant Biol; 2009 Apr; 12(2):202-10. PubMed ID: 19157958
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Legume genetic resources and transcriptome dynamics under abiotic stress conditions.
    Abdelrahman M; Jogaiah S; Burritt DJ; Tran LP
    Plant Cell Environ; 2018 Sep; 41(9):1972-1983. PubMed ID: 29314055
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Achievements and prospects of genomics-assisted breeding in three legume crops of the semi-arid tropics.
    Varshney RK; Mohan SM; Gaur PM; Gangarao NV; Pandey MK; Bohra A; Sawargaonkar SL; Chitikineni A; Kimurto PK; Janila P; Saxena KB; Fikre A; Sharma M; Rathore A; Pratap A; Tripathi S; Datta S; Chaturvedi SK; Mallikarjuna N; Anuradha G; Babbar A; Choudhary AK; Mhase MB; Bharadwaj Ch; Mannur DM; Harer PN; Guo B; Liang X; Nadarajan N; Gowda CL
    Biotechnol Adv; 2013 Dec; 31(8):1120-34. PubMed ID: 23313999
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Advances in Omics Approaches for Abiotic Stress Tolerance in Tomato.
    Chaudhary J; Khatri P; Singla P; Kumawat S; Kumari A; R V; Vikram A; Jindal SK; Kardile H; Kumar R; Sonah H; Deshmukh R
    Biology (Basel); 2019 Nov; 8(4):. PubMed ID: 31775241
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Proteomes and Phosphoproteomes of Anther and Pollen: Availability and Progress.
    Zhang Z; Hu M; Feng X; Gong A; Cheng L; Yuan H
    Proteomics; 2017 Oct; 17(20):. PubMed ID: 28665021
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Looking forward to genetically edited fruit crops.
    Nagamangala Kanchiswamy C; Sargent DJ; Velasco R; Maffei ME; Malnoy M
    Trends Biotechnol; 2015 Feb; 33(2):62-4. PubMed ID: 25129425
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Empowering crop resilience to environmental multiple stress through the modulation of key response components.
    Cappetta E; Andolfo G; Di Matteo A; Ercolano MR
    J Plant Physiol; 2020; 246-247():153134. PubMed ID: 32070802
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Proteomics of model and crop plant species: status, current limitations and strategic advances for crop improvement.
    Vanderschuren H; Lentz E; Zainuddin I; Gruissem W
    J Proteomics; 2013 Nov; 93():5-19. PubMed ID: 23748024
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Proteomic Approaches to Uncover Salt Stress Response Mechanisms in Crops.
    Kausar R; Komatsu S
    Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36613963
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genomic insights into domestication and genetic improvement of fruit crops.
    Wang R; Li X; Sun M; Xue C; Korban SS; Wu J
    Plant Physiol; 2023 Aug; 192(4):2604-2627. PubMed ID: 37163660
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.