These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
562 related articles for article (PubMed ID: 31068014)
61. Silicon derived benefits to combat biotic and abiotic stresses in fruit crops: Current research and future challenges. Rachappanavar V; Kumar M; Negi N; Chowdhury S; Kapoor M; Singh S; Rustagi S; Rai AK; Shreaz S; Negi R; Yadav AN Plant Physiol Biochem; 2024 Jun; 211():108680. PubMed ID: 38701606 [TBL] [Abstract][Full Text] [Related]
62. Genome-wide identification, characterization and expression analysis of long non-coding RNAs in different tissues of apple. An N; Fan S; Wang Y; Zhang L; Gao C; Zhang D; Han M Gene; 2018 Aug; 666():44-57. PubMed ID: 29733967 [TBL] [Abstract][Full Text] [Related]
63. Applications of Multi-Omics Technologies for Crop Improvement. Yang Y; Saand MA; Huang L; Abdelaal WB; Zhang J; Wu Y; Li J; Sirohi MH; Wang F Front Plant Sci; 2021; 12():563953. PubMed ID: 34539683 [TBL] [Abstract][Full Text] [Related]
64. Novel Insights into Tree Biology and Genome Evolution as Revealed Through Genomics. Neale DB; Martínez-García PJ; De La Torre AR; Montanari S; Wei XX Annu Rev Plant Biol; 2017 Apr; 68():457-483. PubMed ID: 28226237 [TBL] [Abstract][Full Text] [Related]
65. Proteome analysis of pear reveals key genes associated with fruit development and quality. Li JM; Huang XS; Li LT; Zheng DM; Xue C; Zhang SL; Wu J Planta; 2015 Jun; 241(6):1363-79. PubMed ID: 25682102 [TBL] [Abstract][Full Text] [Related]
66. Translational genomics for plant breeding with the genome sequence explosion. Kang YJ; Lee T; Lee J; Shim S; Jeong H; Satyawan D; Kim MY; Lee SH Plant Biotechnol J; 2016 Apr; 14(4):1057-69. PubMed ID: 26269219 [TBL] [Abstract][Full Text] [Related]
67. Proteomics and Metabolomics: Two Emerging Areas for Legume Improvement. Ramalingam A; Kudapa H; Pazhamala LT; Weckwerth W; Varshney RK Front Plant Sci; 2015; 6():1116. PubMed ID: 26734026 [TBL] [Abstract][Full Text] [Related]
68. Genomics: a potential panacea for the perennial problem. McClure KA; Sawler J; Gardner KM; Money D; Myles S Am J Bot; 2014 Oct; 101(10):1780-90. PubMed ID: 25326620 [TBL] [Abstract][Full Text] [Related]
69. Genome-wide characterization and expression profiling of PDI family gene reveals function as abiotic and biotic stress tolerance in Chinese cabbage (Brassica rapa ssp. pekinensis). Kayum MA; Park JI; Nath UK; Saha G; Biswas MK; Kim HT; Nou IS BMC Genomics; 2017 Nov; 18(1):885. PubMed ID: 29145809 [TBL] [Abstract][Full Text] [Related]
70. Plant defense compounds: systems approaches to metabolic analysis. Kliebenstein DJ Annu Rev Phytopathol; 2012; 50():155-73. PubMed ID: 22726120 [TBL] [Abstract][Full Text] [Related]
71. Integrative Analysis of Transcriptome and Metabolome Reveals Salt Stress Orchestrating the Accumulation of Specialized Metabolites in Lin S; Zeng S; A B; Yang X; Yang T; Zheng G; Mao G; Wang Y Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33922536 [TBL] [Abstract][Full Text] [Related]
72. Metabolomics in Plant Stress Physiology. Ghatak A; Chaturvedi P; Weckwerth W Adv Biochem Eng Biotechnol; 2018; 164():187-236. PubMed ID: 29470599 [TBL] [Abstract][Full Text] [Related]
73. Unveiling the Secrets of Oil Palm Genetics: A Look into Omics Research. Xu W; John Martin JJ; Li X; Liu X; Zhang R; Hou M; Cao H; Cheng S Int J Mol Sci; 2024 Aug; 25(16):. PubMed ID: 39201312 [TBL] [Abstract][Full Text] [Related]
74. African Orphan Crops Consortium (AOCC): status of developing genomic resources for African orphan crops. Hendre PS; Muthemba S; Kariba R; Muchugi A; Fu Y; Chang Y; Song B; Liu H; Liu M; Liao X; Sahu SK; Wang S; Li L; Lu H; Peng S; Cheng S; Xu X; Yang H; Wang J; Liu X; Simons A; Shapiro HY; Mumm RH; Van Deynze A; Jamnadass R Planta; 2019 Sep; 250(3):989-1003. PubMed ID: 31073657 [TBL] [Abstract][Full Text] [Related]
75. Understanding the responses of rice to environmental stress using proteomics. Singh R; Jwa NS J Proteome Res; 2013 Nov; 12(11):4652-69. PubMed ID: 23984864 [TBL] [Abstract][Full Text] [Related]
76. The use of metabolomics integrated with transcriptomic and proteomic studies for identifying key steps involved in the control of nitrogen metabolism in crops such as maize. Amiour N; Imbaud S; Clément G; Agier N; Zivy M; Valot B; Balliau T; Armengaud P; Quilleré I; Cañas R; Tercet-Laforgue T; Hirel B J Exp Bot; 2012 Sep; 63(14):5017-33. PubMed ID: 22936829 [TBL] [Abstract][Full Text] [Related]
77. Decoding systems biology of plant stress for sustainable agriculture development and optimized food production. Shameer K; Naika MBN; Shafi KM; Sowdhamini R Prog Biophys Mol Biol; 2019 Aug; 145():19-39. PubMed ID: 30562539 [TBL] [Abstract][Full Text] [Related]
79. Achieving crop stress tolerance and improvement--an overview of genomic techniques. Rasool S; Ahmad P; Rehman MU; Arif A; Anjum NA Appl Biochem Biotechnol; 2015 Dec; 177(7):1395-408. PubMed ID: 26440315 [TBL] [Abstract][Full Text] [Related]
80. Comparative transcriptome sequencing and de novo analysis of Vaccinium corymbosum during fruit and color development. Li L; Zhang H; Liu Z; Cui X; Zhang T; Li Y; Zhang L BMC Plant Biol; 2016 Oct; 16(1):223. PubMed ID: 27729032 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]