BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 31068041)

  • 1. Mechanical measurement of the human cerebellum under compressive loading.
    Karimi A; Rahmati SM; Razaghi R; Hasani M
    J Med Eng Technol; 2019 Jan; 43(1):55-58. PubMed ID: 31068041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Experimental Study to Measure the Mechanical Properties of the Human Liver.
    Karimi A; Shojaei A
    Dig Dis; 2018; 36(2):150-155. PubMed ID: 29131053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of the mechanical properties of the human gallbladder.
    Karimi A; Shojaei A; Tehrani P
    J Med Eng Technol; 2017 Oct; 41(7):541-545. PubMed ID: 28849953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical properties of the human spinal cord under the compressive loading.
    Karimi A; Shojaei A; Tehrani P
    J Chem Neuroanat; 2017 Dec; 86():15-18. PubMed ID: 28720407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Material properties and constitutive modeling of infant porcine cerebellum tissue in tension at high strain rate.
    Li K; Zhao H; Liu W; Yin Z
    PLoS One; 2015; 10(4):e0123506. PubMed ID: 25830545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A combination of experimental measurement, constitutive damage model, and diffusion tensor imaging to characterize the mechanical properties of the human brain.
    Karimi A; Rahmati SM; Razaghi R
    Comput Methods Biomech Biomed Engin; 2017 Sep; 20(12):1350-1363. PubMed ID: 28812366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Viscoelastic properties of human cerebellum using magnetic resonance elastography.
    Zhang J; Green MA; Sinkus R; Bilston LE
    J Biomech; 2011 Jul; 44(10):1909-13. PubMed ID: 21565346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of smoking on the mechanical properties of the human lung.
    Karimi A; Razaghi R
    Technol Health Care; 2018; 26(6):963-972. PubMed ID: 30103357
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rate dependent biomechanical properties of corneal stroma in unconfined compression.
    Hatami-Marbini H; Etebu E
    Biorheology; 2013; 50(3-4):133-47. PubMed ID: 23863279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of the circumferential mechanical properties of the umbilical vein: experimental and numerical analyses.
    Karimi A; Navidbakhsh M; Rezaee T; Hassani K
    Comput Methods Biomech Biomed Engin; 2015; 18(13):1418-26. PubMed ID: 24773299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical characterization of human brain tissue.
    Budday S; Sommer G; Birkl C; Langkammer C; Haybaeck J; Kohnert J; Bauer M; Paulsen F; Steinmann P; Kuhl E; Holzapfel GA
    Acta Biomater; 2017 Jan; 48():319-340. PubMed ID: 27989920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of the axial and circumferential mechanical properties of rat skin tissue at different anatomical locations.
    Karimi A; Haghighatnama M; Navidbakhsh M; Haghi AM
    Biomed Tech (Berl); 2015 Apr; 60(2):115-22. PubMed ID: 25389978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The relationship of the compressive modulus of articular cartilage with its deformation response to cyclic loading: does cartilage optimize its modulus so as to minimize the strains arising in it due to the prevalent loading regime?
    Barker MK; Seedhom BB
    Rheumatology (Oxford); 2001 Mar; 40(3):274-84. PubMed ID: 11285374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental and computational analysis of soft tissue stiffness in forearm using a manual indentation device.
    Iivarinen JT; Korhonen RK; Julkunen P; Jurvelin JS
    Med Eng Phys; 2011 Dec; 33(10):1245-53. PubMed ID: 21696992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical characterisation of brain tissue up to 35% strain at 1, 10, and 100/s using a custom-built micro-indentation apparatus.
    MacManus DB; Murphy JG; Gilchrist MD
    J Mech Behav Biomed Mater; 2018 Nov; 87():256-266. PubMed ID: 30096513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of fabric in the large strain compressive behavior of human trabecular bone.
    Charlebois M; Pretterklieber M; Zysset PK
    J Biomech Eng; 2010 Dec; 132(12):121006. PubMed ID: 21142320
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic mechanical properties of murine brain tissue using micro-indentation.
    MacManus DB; Pierrat B; Murphy JG; Gilchrist MD
    J Biomech; 2015 Sep; 48(12):3213-8. PubMed ID: 26189093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite element analysis of mechanical behavior, permeability and fluid induced wall shear stress of high porosity scaffolds with gyroid and lattice-based architectures.
    Ali D; Sen S
    J Mech Behav Biomed Mater; 2017 Nov; 75():262-270. PubMed ID: 28759838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of the axial and circumferential mechanical properties of the skin tissue using experimental testing and constitutive modeling.
    Karimi A; Navidbakhsh M; Haghighatnama M; Haghi AM
    Comput Methods Biomech Biomed Engin; 2015; 18(16):1768-74. PubMed ID: 25266627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The anisotropic compressive mechanical properties of the rabbit patellar tendon.
    Williams LN; Elder SH; Bouvard JL; Horstemeyer MF
    Biorheology; 2008; 45(5):577-86. PubMed ID: 19065006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.