These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 31068132)

  • 41. An updated database of virus circular RNAs provides new insights into the biogenesis mechanism of the molecule.
    Fu P; Cai Z; Zhang Z; Meng X; Peng Y
    Emerg Microbes Infect; 2023 Dec; 12(2):2261558. PubMed ID: 37725485
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Hotspot exons are common targets of splicing perturbations.
    Glidden DT; Buerer JL; Saueressig CF; Fairbrother WG
    Nat Commun; 2021 May; 12(1):2756. PubMed ID: 33980843
    [TBL] [Abstract][Full Text] [Related]  

  • 43. BRIE: transcriptome-wide splicing quantification in single cells.
    Huang Y; Sanguinetti G
    Genome Biol; 2017 Jun; 18(1):123. PubMed ID: 28655331
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Reconstruction of full-length circular RNAs enables isoform-level quantification.
    Zheng Y; Ji P; Chen S; Hou L; Zhao F
    Genome Med; 2019 Jan; 11(1):2. PubMed ID: 30660194
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Interior circular RNA.
    Liu X; Hu Z; Zhou J; Tian C; Tian G; He M; Gao L; Chen L; Li T; Peng H; Zhang W
    RNA Biol; 2020 Jan; 17(1):87-97. PubMed ID: 31532701
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Exon circularization requires canonical splice signals.
    Starke S; Jost I; Rossbach O; Schneider T; Schreiner S; Hung LH; Bindereif A
    Cell Rep; 2015 Jan; 10(1):103-11. PubMed ID: 25543144
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Regulation of circRNA biogenesis.
    Chen LL; Yang L
    RNA Biol; 2015; 12(4):381-8. PubMed ID: 25746834
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Identification of potential proteins translated from circular RNA splice variants.
    Das A; Sinha T; Mishra SS; Das D; Panda AC
    Eur J Cell Biol; 2023 Mar; 102(1):151286. PubMed ID: 36645925
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Circular RNAs: diversity of form and function.
    Lasda E; Parker R
    RNA; 2014 Dec; 20(12):1829-42. PubMed ID: 25404635
    [TBL] [Abstract][Full Text] [Related]  

  • 50. RNA sequencing and Prediction Tools for Circular RNAs Analysis.
    López-Jiménez E; Rojas AM; Andrés-León E
    Adv Exp Med Biol; 2018; 1087():17-33. PubMed ID: 30259354
    [TBL] [Abstract][Full Text] [Related]  

  • 51. AQUARIUM: accurate quantification of circular isoforms using model-based strategy.
    Wen G; Li M; Li F; Yang Z; Zhou T; Gu W
    Bioinformatics; 2021 Dec; 37(24):4879-4881. PubMed ID: 34115093
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Base-Editor-Mediated circRNA Knockout by Targeting Predominantly Back-Splice Sites.
    Ma XK; Gao X; Cao M; Yang L
    Methods Mol Biol; 2024; 2765():193-208. PubMed ID: 38381341
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ambiguous splice sites distinguish circRNA and linear splicing in the human genome.
    Dehghannasiri R; Szabo L; Salzman J
    Bioinformatics; 2019 Apr; 35(8):1263-1268. PubMed ID: 30192918
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Splicing Enhancers at Intron-Exon Borders Participate in Acceptor Splice Sites Recognition.
    Kováčová T; Souček P; Hujová P; Freiberger T; Grodecká L
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32911621
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Widespread exon skipping triggers degradation by nuclear RNA surveillance in fission yeast.
    Bitton DA; Atkinson SR; Rallis C; Smith GC; Ellis DA; Chen YY; Malecki M; Codlin S; Lemay JF; Cotobal C; Bachand F; Marguerat S; Mata J; Bähler J
    Genome Res; 2015 Jun; 25(6):884-96. PubMed ID: 25883323
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Titin Circular RNAs Create a Back-Splice Motif Essential for SRSF10 Splicing.
    Tijsen AJ; Cócera Ortega L; Reckman YJ; Zhang X; van der Made I; Aufiero S; Li J; Kamps SC; van den Bout A; Devalla HD; van Spaendonck-Zwarts KY; Engelhardt S; Gepstein L; Ware JS; Pinto YM
    Circulation; 2021 Apr; 143(15):1502-1512. PubMed ID: 33583186
    [TBL] [Abstract][Full Text] [Related]  

  • 57. SPLICE-q: a Python tool for genome-wide quantification of splicing efficiency.
    de Melo Costa VR; Pfeuffer J; Louloupi A; Ørom UAV; Piro RM
    BMC Bioinformatics; 2021 Jul; 22(1):368. PubMed ID: 34266387
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Circular RNA Expression: Its Potential Regulation and Function.
    Salzman J
    Trends Genet; 2016 May; 32(5):309-316. PubMed ID: 27050930
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Dynamic nanopore long-read sequencing analysis of HIV-1 splicing events during the early steps of infection.
    Nguyen Quang N; Goudey S; Ségéral E; Mohammad A; Lemoine S; Blugeon C; Versapuech M; Paillart JC; Berlioz-Torrent C; Emiliani S; Gallois-Montbrun S
    Retrovirology; 2020 Aug; 17(1):25. PubMed ID: 32807178
    [TBL] [Abstract][Full Text] [Related]  

  • 60. FL-circAS: an integrative resource and analysis for full-length sequences and alternative splicing of circular RNAs with nanopore sequencing.
    Chiang TW; Jhong SE; Chen YC; Chen CY; Wu WS; Chuang TJ
    Nucleic Acids Res; 2024 Jan; 52(D1):D115-D123. PubMed ID: 37823705
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.