These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 31068316)

  • 1. [Establishment of a stable HEK293T cell line with c.392G>T (p.131G>V) mutation site knockout in
    Zhou Y; Hui W; Zhang H; Zou L; Zhang P
    Nan Fang Yi Ke Da Xue Xue Bao; 2019 Mar; 39(3):320-327. PubMed ID: 31068316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction of an Inducible CRISPR/Cas9 System for CXCR4 Gene and Demonstration of its Effects on MKN-45 Cells.
    Peng Y; Yang T; Tang X; Chen F; Wang S
    Cell Biochem Biophys; 2020 Mar; 78(1):23-30. PubMed ID: 31875277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Application of CRISPR/Cas9 Gene Editing Technique to Establish S1PR5 Gene Knockout Mice].
    Gu ZY; Zhao XL; Yang N; Wang L; Wang FY; Wang LL; Gao CJ
    Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2016 Aug; 24(4):1155-62. PubMed ID: 27531792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmid-based CRISPR-Cas9 system efficacy for introducing targeted mutations in CD81 gene of MDA-MB-231 cell line.
    Arbabi Zaboli K; Rahimi H; Thekkiniath J; Taromchi AH; Kaboli S
    Folia Histochem Cytobiol; 2022; 60(1):13-23. PubMed ID: 35157300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimized CRISPR/Cas9 system for gene knockout in chicken DF1 cells.
    Zou K; Wang F; Zhang Z; Zhou Y; Li P; Wang D; Zhu M; Jia C; Wei Z
    Poult Sci; 2023 Oct; 102(10):102970. PubMed ID: 37562129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR/Cas9-mediated gene knockout is insensitive to target copy number but is dependent on guide RNA potency and Cas9/sgRNA threshold expression level.
    Yuen G; Khan FJ; Gao S; Stommel JM; Batchelor E; Wu X; Luo J
    Nucleic Acids Res; 2017 Nov; 45(20):12039-12053. PubMed ID: 29036671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Construction of a stable 4.1R gene knockout cell model in RAW264.7 cells using CRISPR/Cas9 technique].
    Wang CB; Kang QZ; Ding C; Li YW; Liang TT; Zhang CL; Wang W; Wang T
    Nan Fang Yi Ke Da Xue Xue Bao; 2017 Dec; 37(12):1609-1614. PubMed ID: 29292253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [ADRB2 Gene Knockout in Human Primary T Cells by Multiple sgRNAs Construced using CRISPR/Cas9 Technology].
    Sun Y; Liu D; Shi M; Zheng JN
    Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2019 Oct; 27(5):1682-1690. PubMed ID: 31607332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cholesterol-rich lipid-mediated nanoparticles boost of transfection efficiency, utilized for gene editing by CRISPR-Cas9.
    Hosseini ES; Nikkhah M; Hosseinkhani S
    Int J Nanomedicine; 2019; 14():4353-4366. PubMed ID: 31354265
    [No Abstract]   [Full Text] [Related]  

  • 10. [Construction of a stable
    Zhou Z; Lü X; Zhu L; Zhou J; Huang H; Zhang C; Liu X
    Sheng Wu Gong Cheng Xue Bao; 2022 Mar; 38(3):1074-1085. PubMed ID: 35355475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative analysis of lipid Nanoparticle-Mediated delivery of CRISPR-Cas9 RNP versus mRNA/sgRNA for gene editing in vitro and in vivo.
    Walther J; Porenta D; Wilbie D; Seinen C; Benne N; Yang Q; de Jong OG; Lei Z; Mastrobattista E
    Eur J Pharm Biopharm; 2024 Mar; 196():114207. PubMed ID: 38325664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Construction of macrophage RAW 264.7 cells with
    Zhou L; Ye Y; Yuan H; Wu C; Wu S
    Nan Fang Yi Ke Da Xue Xue Bao; 2021 Jan; 41(1):116-122. PubMed ID: 33509763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Construction of Rev-erbβ gene knockout HEK293 cell line with CRISPR/Cas9 system].
    Chen F; Zhang W; Zhao J; Yang P; Ma R; Xia H
    Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi; 2016 Nov; 32(11):1446-1452. PubMed ID: 27774932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [CRISPR/Cas9-based knockout of GPR43 gene in RAW264.7 cells inhibits their phagocytosis to Klebsiella pneumoniae].
    Xu F; Su C; Wu T; Chen H; Zhang P; Liu Y; Lan Y; Li J
    Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi; 2020 Jun; 36(6):481-486. PubMed ID: 32696736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimizing sgRNA length to improve target specificity and efficiency for the GGTA1 gene using the CRISPR/Cas9 gene editing system.
    Matson AW; Hosny N; Swanson ZA; Hering BJ; Burlak C
    PLoS One; 2019; 14(12):e0226107. PubMed ID: 31821359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual-sgRNA CRISPR/Cas9 knockout of PD-L1 in human U87 glioblastoma tumor cells inhibits proliferation, invasion, and tumor-associated macrophage polarization.
    Fierro J; DiPasquale J; Perez J; Chin B; Chokpapone Y; Tran AM; Holden A; Factoriza C; Sivagnanakumar N; Aguilar R; Mazal S; Lopez M; Dou H
    Sci Rep; 2022 Feb; 12(1):2417. PubMed ID: 35165339
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR/Cas9-Mediated Chicken TBK1 Gene Knockout and Its Essential Role in STING-Mediated IFN-β Induction in Chicken Cells.
    Cheng Y; Lun M; Liu Y; Wang H; Yan Y; Sun J
    Front Immunol; 2018; 9():3010. PubMed ID: 30662438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Construction of Traf3 knockout liver cancer cell line using CRISPR/Cas9 system.
    Hu W; Guo G; Chi Y; Li F
    J Cell Biochem; 2019 Sep; 120(9):14908-14915. PubMed ID: 31016787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR/Cas9-based genome editing in mice by single plasmid injection.
    Fujihara Y; Ikawa M
    Methods Enzymol; 2014; 546():319-36. PubMed ID: 25398347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Construction of ACT-1 human undifferentiated thyroid cancer cell line with knockout of axis inhibition protein 1 (AXIN1) gene using CRISPR/Cas9].
    Wen D; Huang R; Xie J; Wen H; Lin S
    Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi; 2020 May; 36(5):419-424. PubMed ID: 32696754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.