These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 31068638)
1. Optofluidic variable optical path modulator. Wang QH; Xiao L; Liu C; Li L Sci Rep; 2019 May; 9(1):7082. PubMed ID: 31068638 [TBL] [Abstract][Full Text] [Related]
2. Electrowetting-actuated optofluidic phase modulator. Zhang W; Zhao R; He Y; Ding W; Liang Z; Kong M; Chen T Opt Express; 2021 Jan; 29(2):797-804. PubMed ID: 33726308 [TBL] [Abstract][Full Text] [Related]
3. Optofluidic lens based on electrowetting liquid piston. Li LY; Yuan RY; Wang JH; Li L; Wang QH Sci Rep; 2019 Sep; 9(1):13062. PubMed ID: 31506551 [TBL] [Abstract][Full Text] [Related]
4. Displaceable and focus-tunable electrowetting optofluidic lens. Li L; Wang JH; Wang QH; Wu ST Opt Express; 2018 Oct; 26(20):25839-25848. PubMed ID: 30469679 [TBL] [Abstract][Full Text] [Related]
5. Design and Characteristics of an Optofluidic Phase Modulator Based on Dielectrowetting. Liang Z; Ding W; Zhao R; Huang Y; Kong M; Chen T Langmuir; 2021 Jan; 37(2):769-773. PubMed ID: 33401905 [TBL] [Abstract][Full Text] [Related]
6. Multifunctional optofluidic lens with beam steering. Liu C; Wang D; Wang QH; Xing Y Opt Express; 2020 Mar; 28(5):7734-7745. PubMed ID: 32225994 [TBL] [Abstract][Full Text] [Related]
7. Electrowetting-driven solar indoor lighting (e-SIL): an optofluidic approach towards sustainable buildings. Thio SK; Jiang D; Park SY Lab Chip; 2018 Jun; 18(12):1725-1735. PubMed ID: 29726880 [TBL] [Abstract][Full Text] [Related]
9. Tunable micro-optofluidic prism based on liquid-core liquid-cladding configuration. Song C; Nguyen NT; Asundi AK; Tan SH Opt Lett; 2010 Feb; 35(3):327-9. PubMed ID: 20125710 [TBL] [Abstract][Full Text] [Related]
10. Dynamics of a microliquid prism actuated by electrowetting. Lee DG; Park J; Bae J; Kim HY Lab Chip; 2013 Jan; 13(2):274-9. PubMed ID: 23165931 [TBL] [Abstract][Full Text] [Related]
12. All-in-fiber optofluidic sensor fabricated by femtosecond laser assisted chemical etching. Yuan L; Huang J; Lan X; Wang H; Jiang L; Xiao H Opt Lett; 2014 Apr; 39(8):2358-61. PubMed ID: 24978992 [TBL] [Abstract][Full Text] [Related]
13. Hybrid driving variable-focus optofluidic lens. Wang JH; Tang WP; Li LY; Xiao L; Zhou X; Wang QH Opt Express; 2019 Nov; 27(24):35203-35215. PubMed ID: 31878693 [TBL] [Abstract][Full Text] [Related]
14. Femtosecond laser multibeam parallel processing for variable focal-length optofluidic chips. Lei P; Zhang J; Shangguan S; Wang Z; Cao W; Qi D; Zheng H Opt Lett; 2023 Nov; 48(21):5603-5606. PubMed ID: 37910713 [TBL] [Abstract][Full Text] [Related]
15. Optofluidic variable-focus lenses for light manipulation. Seow YC; Lim SP; Lee HP Lab Chip; 2012 Oct; 12(19):3810-5. PubMed ID: 22885654 [TBL] [Abstract][Full Text] [Related]
16. Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation. Yang Y; Liu AQ; Chin LK; Zhang XM; Tsai DP; Lin CL; Lu C; Wang GP; Zheludev NI Nat Commun; 2012 Jan; 3():651. PubMed ID: 22337129 [TBL] [Abstract][Full Text] [Related]
19. Optofluidic tweezer on a chip. Ono K; Kaneda S; Shiraishi T; Fujii T Biomicrofluidics; 2010 Dec; 4(4):43012. PubMed ID: 21267089 [TBL] [Abstract][Full Text] [Related]
20. Holographic display system with adjustable viewing angle based on multi-focus optofluidic lens. Liu C; Wang D; Wang QH Opt Express; 2019 Jun; 27(13):18210-18221. PubMed ID: 31252768 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]