These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 31068638)

  • 21. Investigation into fabrication and optical characteristics of tunable optofluidic microlenses using two-photon polymerization.
    Wang Z; Wu Y; Yu W; Qi D; Bakhtiyari AN; Zheng H
    Opt Express; 2024 Feb; 32(5):7448-7462. PubMed ID: 38439424
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Design, fabrication, and characterization of an optofluidic phase modulator array based on the piezoelectric effect.
    Wei X; Zhao R; Liang Z; Kong M; Chen T
    Opt Lett; 2022 Mar; 47(6):1315-1318. PubMed ID: 35290302
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dual-mode reconfigurable focusing using the interface of aqueous and dielectric liquids.
    Kim W; Lee C; Kim C; Kim DS
    Lab Chip; 2017 Nov; 17(23):4031-4039. PubMed ID: 29090289
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Deep Learning Enables Optofluidic Zoom System with Large Zoom Ratio and High Imaging Resolution.
    Xu J; Kuang F; Liu S; Li L
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991915
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An arrayed optofluidic system for three-dimensional (3D) focal control via electrowetting.
    Lee Y; Lee CH; Park SY
    Opt Express; 2023 May; 31(11):17677-17694. PubMed ID: 37381495
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optofluidic modulator based on thermoplasmonically controlled liquid-liquid interface.
    Chalikkara F; Varanakkottu SN
    Opt Lett; 2021 Aug; 46(16):3993-3996. PubMed ID: 34388793
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optofluidic router based on tunable liquid-liquid mirrors.
    Müller P; Kopp D; Llobera A; Zappe H
    Lab Chip; 2014 Feb; 14(4):737-43. PubMed ID: 24287814
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microfluidic-controlled optical router for lab on a chip.
    Dietvorst J; Goyvaerts J; Ackermann TN; Alvarez E; Muñoz-Berbel X; Llobera A
    Lab Chip; 2019 Jun; 19(12):2081-2088. PubMed ID: 31114831
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lab-on-fiber electrophoretic trace mixture separating and detecting an optofluidic device based on a microstructured optical fiber.
    Yang X; Guo X; Li S; Kong D; Liu Z; Yang J; Yuan L
    Opt Lett; 2016 Apr; 41(8):1873-6. PubMed ID: 27082367
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nonmechanical three-dimensional beam steering using electrowetting-based liquid lens and liquid prism.
    Lee J; Lee J; Won YH
    Opt Express; 2019 Dec; 27(25):36757-36766. PubMed ID: 31873449
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optofluidic refractive index sensor based on asymmetric diffraction.
    Tu X; Luo Y; Huang T; Gan J; Song C
    Opt Express; 2019 Jun; 27(13):17809-17818. PubMed ID: 31252734
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tunable optical limiting optofluidic device filled with graphene oxide dispersion in ethanol.
    Fang C; Dai B; Hong R; Tao C; Wang Q; Wang X; Zhang D; Zhuang S
    Sci Rep; 2015 Oct; 5():15362. PubMed ID: 26477662
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrically optofluidic zoom system with a large zoom range and high-resolution image.
    Li L; Yuan RY; Wang JH; Wang QH
    Opt Express; 2017 Sep; 25(19):22280-22291. PubMed ID: 29041541
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tunable focusing properties using optofluidic Fresnel zone plates.
    Shi Y; Zhu XQ; Liang L; Yang Y
    Lab Chip; 2016 Nov; 16(23):4554-4559. PubMed ID: 27785508
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Novel Hexagonal Beam Steering Electrowetting Device for Solar Energy Concentration.
    Khan I; Castelletto S; Rosengarten G
    Micromachines (Basel); 2020 Nov; 11(11):. PubMed ID: 33228118
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optofluidic lens with tunable focal length and asphericity.
    Mishra K; Murade C; Carreel B; Roghair I; Oh JM; Manukyan G; van den Ende D; Mugele F
    Sci Rep; 2014 Sep; 4():6378. PubMed ID: 25224851
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An optofluidic prism tuned by two laminar flows.
    Xiong S; Liu AQ; Chin LK; Yang Y
    Lab Chip; 2011 Jun; 11(11):1864-9. PubMed ID: 21448472
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adaptive liquid lens with a tunable field of view.
    Tian JQ; Zhao ZZ; Li L
    Opt Express; 2022 Oct; 30(22):40991-41001. PubMed ID: 36299022
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optofluidic adaptive optics in multi-photon microscopy.
    Sohmen M; Muñoz-Bolaños JD; Rajaeipour P; Ritsch-Marte M; Ataman Ç; Jesacher A
    Biomed Opt Express; 2023 Apr; 14(4):1562-1578. PubMed ID: 37078059
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Liquid lens using acoustic radiation force.
    Koyama D; Isago R; Nakamura K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Mar; 58(3):596-602. PubMed ID: 21429850
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.