BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

520 related articles for article (PubMed ID: 31068926)

  • 1. CD38 in Adenosinergic Pathways and Metabolic Re-programming in Human Multiple Myeloma Cells: In-tandem Insights From Basic Science to Therapy.
    Horenstein AL; Bracci C; Morandi F; Malavasi F
    Front Immunol; 2019; 10():760. PubMed ID: 31068926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional insights into nucleotide-metabolizing ectoenzymes expressed by bone marrow-resident cells in patients with multiple myeloma.
    Horenstein AL; Morandi F; Bracci C; Pistoia V; Malavasi F
    Immunol Lett; 2019 Jan; 205():40-50. PubMed ID: 30447309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CD38 Expression by Myeloma Cells and Its Role in the Context of Bone Marrow Microenvironment: Modulation by Therapeutic Agents.
    Costa F; Dalla Palma B; Giuliani N
    Cells; 2019 Dec; 8(12):. PubMed ID: 31847204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adenosine Generated in the Bone Marrow Niche Through a CD38-Mediated Pathway Correlates with Progression of Human Myeloma.
    Horenstein AL; Quarona V; Toscani D; Costa F; Chillemi A; Pistoia V; Giuliani N; Malavasi F
    Mol Med; 2016 Dec; 22():694-704. PubMed ID: 27761584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting NAD
    Kennedy BE; Sadek M; Elnenaei MO; Reiman A; Gujar SA
    Trends Cancer; 2020 Jan; 6(1):9-12. PubMed ID: 31952784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microvesicles released from multiple myeloma cells are equipped with ectoenzymes belonging to canonical and non-canonical adenosinergic pathways and produce adenosine from ATP and NAD
    Morandi F; Marimpietri D; Horenstein AL; Bolzoni M; Toscani D; Costa F; Castella B; Faini AC; Massaia M; Pistoia V; Giuliani N; Malavasi F
    Oncoimmunology; 2018; 7(8):e1458809. PubMed ID: 30221054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A non-canonical adenosinergic pathway led by CD38 in human melanoma cells induces suppression of T cell proliferation.
    Morandi F; Morandi B; Horenstein AL; Chillemi A; Quarona V; Zaccarello G; Carrega P; Ferlazzo G; Mingari MC; Moretta L; Pistoia V; Malavasi F
    Oncotarget; 2015 Sep; 6(28):25602-18. PubMed ID: 26329660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting of CD38 by the Tumor Suppressor miR-26a Serves as a Novel Potential Therapeutic Agent in Multiple Myeloma.
    Hu Y; Liu H; Fang C; Li C; Xhyliu F; Dysert H; Bodo J; Habermehl G; Russell BE; Li W; Chappell M; Jiang X; Ondrejka SL; Hsi ED; Maciejewski JP; Yi Q; Anderson KC; Munshi NC; Ao G; Valent JN; Lin J; Zhao J
    Cancer Res; 2020 May; 80(10):2031-2044. PubMed ID: 32193289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The link between bone microenvironment and immune cells in multiple myeloma: Emerging role of CD38.
    Bolzoni M; Toscani D; Costa F; Vicario E; Aversa F; Giuliani N
    Immunol Lett; 2019 Jan; 205():65-70. PubMed ID: 29702149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Role of Extracellular Adenosine Generation in the Development of Autoimmune Diseases.
    Morandi F; Horenstein AL; Rizzo R; Malavasi F
    Mediators Inflamm; 2018; 2018():7019398. PubMed ID: 29769837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamics of targeting CD38 in multiple myeloma.
    Malavasi F; Faini AC; Morandi F; Castella B; Incarnato D; Oliviero S; Horenstein AL; Massaia M; van de Donk NWCJ; Richardson PG
    Br J Haematol; 2021 May; 193(3):581-591. PubMed ID: 33570193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Daratumumab in multiple myeloma.
    Nooka AK; Kaufman JL; Hofmeister CC; Joseph NS; Heffner TL; Gupta VA; Sullivan HC; Neish AS; Dhodapkar MV; Lonial S
    Cancer; 2019 Jul; 125(14):2364-2382. PubMed ID: 30951198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SAR442085, a novel anti-CD38 antibody with enhanced antitumor activity against multiple myeloma.
    Kassem S; Diallo BK; El-Murr N; CarriƩ N; Tang A; Fournier A; Bonnevaux H; Nicolazzi C; Cuisinier M; Arnould I; Sidhu SS; Corre J; Avet-Loiseau H; Teillaud JL; van de Velde H; Wiederschain D; Chiron M; Martinet L; Virone-Oddos A
    Blood; 2022 Feb; 139(8):1160-1176. PubMed ID: 35201323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Roles and Modalities of Ectonucleotidases in Remodeling the Multiple Myeloma Niche.
    Chillemi A; Quarona V; Antonioli L; Ferrari D; Horenstein AL; Malavasi F
    Front Immunol; 2017; 8():305. PubMed ID: 28373875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immunomodulatory properties of CD38 antibodies and their effect on anticancer efficacy in multiple myeloma.
    Bisht K; Fukao T; Chiron M; Richardson P; Atanackovic D; Chini E; Chng WJ; Van De Velde H; Malavasi F
    Cancer Med; 2023 Oct; 12(20):20332-20352. PubMed ID: 37840445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Canonical and non-canonical adenosinergic pathways.
    Ferretti E; Horenstein AL; Canzonetta C; Costa F; Morandi F
    Immunol Lett; 2019 Jan; 205():25-30. PubMed ID: 29550257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting the Immune Niche within the Bone Marrow Microenvironment: The Rise of Immunotherapy in Multiple Myeloma.
    Podar K; Jager D
    Curr Cancer Drug Targets; 2017; 17(9):782-805. PubMed ID: 28201977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting Multiple Myeloma with AMG 424, a Novel Anti-CD38/CD3 Bispecific T-cell-recruiting Antibody Optimized for Cytotoxicity and Cytokine Release.
    Zuch de Zafra CL; Fajardo F; Zhong W; Bernett MJ; Muchhal US; Moore GL; Stevens J; Case R; Pearson JT; Liu S; McElroy PL; Canon J; Desjarlais JR; Coxon A; Balazs M; Nolan-Stevaux O
    Clin Cancer Res; 2019 Jul; 25(13):3921-3933. PubMed ID: 30918018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unraveling the contribution of ectoenzymes to myeloma life and survival in the bone marrow niche.
    Quarona V; Ferri V; Chillemi A; Bolzoni M; Mancini C; Zaccarello G; Roato I; Morandi F; Marimpietri D; Faccani G; Martella E; Pistoia V; Giuliani N; Horenstein AL; Malavasi F
    Ann N Y Acad Sci; 2015 Jan; 1335():10-22. PubMed ID: 25048519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pre-clinical evaluation of CD38 chimeric antigen receptor engineered T cells for the treatment of multiple myeloma.
    Drent E; Groen RW; Noort WA; Themeli M; Lammerts van Bueren JJ; Parren PW; Kuball J; Sebestyen Z; Yuan H; de Bruijn J; van de Donk NW; Martens AC; Lokhorst HM; Mutis T
    Haematologica; 2016 May; 101(5):616-25. PubMed ID: 26858358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.