These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
532 related articles for article (PubMed ID: 31068926)
1. CD38 in Adenosinergic Pathways and Metabolic Re-programming in Human Multiple Myeloma Cells: In-tandem Insights From Basic Science to Therapy. Horenstein AL; Bracci C; Morandi F; Malavasi F Front Immunol; 2019; 10():760. PubMed ID: 31068926 [TBL] [Abstract][Full Text] [Related]
2. Functional insights into nucleotide-metabolizing ectoenzymes expressed by bone marrow-resident cells in patients with multiple myeloma. Horenstein AL; Morandi F; Bracci C; Pistoia V; Malavasi F Immunol Lett; 2019 Jan; 205():40-50. PubMed ID: 30447309 [TBL] [Abstract][Full Text] [Related]
3. CD38 Expression by Myeloma Cells and Its Role in the Context of Bone Marrow Microenvironment: Modulation by Therapeutic Agents. Costa F; Dalla Palma B; Giuliani N Cells; 2019 Dec; 8(12):. PubMed ID: 31847204 [TBL] [Abstract][Full Text] [Related]
4. Adenosine Generated in the Bone Marrow Niche Through a CD38-Mediated Pathway Correlates with Progression of Human Myeloma. Horenstein AL; Quarona V; Toscani D; Costa F; Chillemi A; Pistoia V; Giuliani N; Malavasi F Mol Med; 2016 Dec; 22():694-704. PubMed ID: 27761584 [TBL] [Abstract][Full Text] [Related]
5. Targeting NAD Kennedy BE; Sadek M; Elnenaei MO; Reiman A; Gujar SA Trends Cancer; 2020 Jan; 6(1):9-12. PubMed ID: 31952784 [TBL] [Abstract][Full Text] [Related]
6. Microvesicles released from multiple myeloma cells are equipped with ectoenzymes belonging to canonical and non-canonical adenosinergic pathways and produce adenosine from ATP and NAD Morandi F; Marimpietri D; Horenstein AL; Bolzoni M; Toscani D; Costa F; Castella B; Faini AC; Massaia M; Pistoia V; Giuliani N; Malavasi F Oncoimmunology; 2018; 7(8):e1458809. PubMed ID: 30221054 [TBL] [Abstract][Full Text] [Related]
7. A non-canonical adenosinergic pathway led by CD38 in human melanoma cells induces suppression of T cell proliferation. Morandi F; Morandi B; Horenstein AL; Chillemi A; Quarona V; Zaccarello G; Carrega P; Ferlazzo G; Mingari MC; Moretta L; Pistoia V; Malavasi F Oncotarget; 2015 Sep; 6(28):25602-18. PubMed ID: 26329660 [TBL] [Abstract][Full Text] [Related]
8. Targeting of CD38 by the Tumor Suppressor miR-26a Serves as a Novel Potential Therapeutic Agent in Multiple Myeloma. Hu Y; Liu H; Fang C; Li C; Xhyliu F; Dysert H; Bodo J; Habermehl G; Russell BE; Li W; Chappell M; Jiang X; Ondrejka SL; Hsi ED; Maciejewski JP; Yi Q; Anderson KC; Munshi NC; Ao G; Valent JN; Lin J; Zhao J Cancer Res; 2020 May; 80(10):2031-2044. PubMed ID: 32193289 [TBL] [Abstract][Full Text] [Related]
9. The link between bone microenvironment and immune cells in multiple myeloma: Emerging role of CD38. Bolzoni M; Toscani D; Costa F; Vicario E; Aversa F; Giuliani N Immunol Lett; 2019 Jan; 205():65-70. PubMed ID: 29702149 [TBL] [Abstract][Full Text] [Related]
10. The Role of Extracellular Adenosine Generation in the Development of Autoimmune Diseases. Morandi F; Horenstein AL; Rizzo R; Malavasi F Mediators Inflamm; 2018; 2018():7019398. PubMed ID: 29769837 [TBL] [Abstract][Full Text] [Related]
11. Molecular dynamics of targeting CD38 in multiple myeloma. Malavasi F; Faini AC; Morandi F; Castella B; Incarnato D; Oliviero S; Horenstein AL; Massaia M; van de Donk NWCJ; Richardson PG Br J Haematol; 2021 May; 193(3):581-591. PubMed ID: 33570193 [TBL] [Abstract][Full Text] [Related]
14. Roles and Modalities of Ectonucleotidases in Remodeling the Multiple Myeloma Niche. Chillemi A; Quarona V; Antonioli L; Ferrari D; Horenstein AL; Malavasi F Front Immunol; 2017; 8():305. PubMed ID: 28373875 [TBL] [Abstract][Full Text] [Related]
15. Immunomodulatory properties of CD38 antibodies and their effect on anticancer efficacy in multiple myeloma. Bisht K; Fukao T; Chiron M; Richardson P; Atanackovic D; Chini E; Chng WJ; Van De Velde H; Malavasi F Cancer Med; 2023 Oct; 12(20):20332-20352. PubMed ID: 37840445 [TBL] [Abstract][Full Text] [Related]
16. Canonical and non-canonical adenosinergic pathways. Ferretti E; Horenstein AL; Canzonetta C; Costa F; Morandi F Immunol Lett; 2019 Jan; 205():25-30. PubMed ID: 29550257 [TBL] [Abstract][Full Text] [Related]
17. Targeting the Immune Niche within the Bone Marrow Microenvironment: The Rise of Immunotherapy in Multiple Myeloma. Podar K; Jager D Curr Cancer Drug Targets; 2017; 17(9):782-805. PubMed ID: 28201977 [TBL] [Abstract][Full Text] [Related]
18. Targeting Multiple Myeloma with AMG 424, a Novel Anti-CD38/CD3 Bispecific T-cell-recruiting Antibody Optimized for Cytotoxicity and Cytokine Release. Zuch de Zafra CL; Fajardo F; Zhong W; Bernett MJ; Muchhal US; Moore GL; Stevens J; Case R; Pearson JT; Liu S; McElroy PL; Canon J; Desjarlais JR; Coxon A; Balazs M; Nolan-Stevaux O Clin Cancer Res; 2019 Jul; 25(13):3921-3933. PubMed ID: 30918018 [TBL] [Abstract][Full Text] [Related]
19. Unraveling the contribution of ectoenzymes to myeloma life and survival in the bone marrow niche. Quarona V; Ferri V; Chillemi A; Bolzoni M; Mancini C; Zaccarello G; Roato I; Morandi F; Marimpietri D; Faccani G; Martella E; Pistoia V; Giuliani N; Horenstein AL; Malavasi F Ann N Y Acad Sci; 2015 Jan; 1335():10-22. PubMed ID: 25048519 [TBL] [Abstract][Full Text] [Related]
20. Pre-clinical evaluation of CD38 chimeric antigen receptor engineered T cells for the treatment of multiple myeloma. Drent E; Groen RW; Noort WA; Themeli M; Lammerts van Bueren JJ; Parren PW; Kuball J; Sebestyen Z; Yuan H; de Bruijn J; van de Donk NW; Martens AC; Lokhorst HM; Mutis T Haematologica; 2016 May; 101(5):616-25. PubMed ID: 26858358 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]