BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 31069586)

  • 1. Contrast-Enhancing Snapshot Narrow-Band Imaging Method for Real-Time Computer-Aided Cervical Cancer Screening.
    Yi D; Kong L; Zhao Y
    J Digit Imaging; 2020 Feb; 33(1):211-220. PubMed ID: 31069586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multispectral Image under Tissue Classification Algorithm in Screening of Cervical Cancer.
    Wang P; Wang S; Zhang Y; Duan X
    J Healthc Eng; 2022; 2022():9048123. PubMed ID: 35035863
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep multiple-instance learning for abnormal cell detection in cervical histopathology images.
    Pal A; Xue Z; Desai K; Aina F Banjo A; Adepiti CA; Long LR; Schiffman M; Antani S
    Comput Biol Med; 2021 Nov; 138():104890. PubMed ID: 34601391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Early detection of carcinoma in situ of the bladder: a comparative study of white light cystoscopy, narrow band imaging, 5-ALA fluorescence cystoscopy and 3-dimensional optical coherence tomography.
    Ren H; Park KC; Pan R; Waltzer WC; Shroyer KR; Pan Y
    J Urol; 2012 Mar; 187(3):1063-70. PubMed ID: 22245332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A review of image analysis and machine learning techniques for automated cervical cancer screening from pap-smear images.
    William W; Ware A; Basaza-Ejiri AH; Obungoloch J
    Comput Methods Programs Biomed; 2018 Oct; 164():15-22. PubMed ID: 30195423
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative study on artificial intelligence systems for detecting early esophageal squamous cell carcinoma between narrow-band and white-light imaging.
    Li B; Cai SL; Tan WM; Li JC; Yalikong A; Feng XS; Yu HH; Lu PX; Feng Z; Yao LQ; Zhou PH; Yan B; Zhong YS
    World J Gastroenterol; 2021 Jan; 27(3):281-293. PubMed ID: 33519142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Cervical Histopathology Dataset for Computer Aided Diagnosis of Precancerous Lesions.
    Meng Z; Zhao Z; Li B; Su F; Guo L
    IEEE Trans Med Imaging; 2021 Jun; 40(6):1531-1541. PubMed ID: 33600310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effective Screening and Classification of Cervical Precancer Biopsy Imagery.
    Jagtap J; Patil N; Parchur AK; Pantola C; Agarwal A; Pandey K; Pradhan A
    IEEE Trans Nanobioscience; 2017 Dec; 16(8):687-693. PubMed ID: 28727556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep Convolution Neural Network for Malignancy Detection and Classification in Microscopic Uterine Cervix Cell Images.
    P B S; Faruqi F; K S H; Kudva R
    Asian Pac J Cancer Prev; 2019 Nov; 20(11):3447-3456. PubMed ID: 31759371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cervical cell classification with graph convolutional network.
    Shi J; Wang R; Zheng Y; Jiang Z; Zhang H; Yu L
    Comput Methods Programs Biomed; 2021 Jan; 198():105807. PubMed ID: 33130497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hierarchical pathology screening for cervical abnormality.
    Zhou M; Zhang L; Du X; Ouyang X; Zhang X; Shen Q; Luo D; Fan X; Wang Q
    Comput Med Imaging Graph; 2021 Apr; 89():101892. PubMed ID: 33744789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Micro 4D Imaging Sensor Using Snapshot Narrowband Imaging Method.
    Jiang W; Yi D; Huang C; Yu Q; Kong L
    Micromachines (Basel); 2023 Aug; 14(9):. PubMed ID: 37763852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computer-aided diagnosis tool for cervical cancer screening with weakly supervised localization and detection of abnormalities using adaptable and explainable classifier.
    Pirovano A; Almeida LG; Ladjal S; Bloch I; Berlemont S
    Med Image Anal; 2021 Oct; 73():102167. PubMed ID: 34333217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comprehensive advancement in endoscopy: optical design, algorithm enhancement, and clinical validation for merged WLI and CBI imaging.
    Fu Y; Zhang S; Ma L; Zhao Z; Liao H; Xie T
    Biomed Opt Express; 2024 Feb; 15(2):506-523. PubMed ID: 38404328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Augmenting atlas-based liver segmentation for radiotherapy treatment planning by incorporating image features proximal to the atlas contours.
    Li D; Liu L; Chen J; Li H; Yin Y; Ibragimov B; Xing L
    Phys Med Biol; 2017 Jan; 62(1):272-288. PubMed ID: 27991439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Image partitioning and illumination in image-based pose detection for teleoperated flexible endoscopes.
    Bell CS; Obstein KL; Valdastri P
    Artif Intell Med; 2013 Nov; 59(3):185-96. PubMed ID: 24188575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel optical imaging method for the early detection, quantitative grading, and mapping of cancerous and precancerous lesions of cervix.
    Balas C
    IEEE Trans Biomed Eng; 2001 Jan; 48(1):96-104. PubMed ID: 11235596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Narrow band deformable registration of prostate magnetic resonance imaging, magnetic resonance spectroscopic imaging, and computed tomography studies.
    Schreibmann E; Xing L
    Int J Radiat Oncol Biol Phys; 2005 Jun; 62(2):595-605. PubMed ID: 15890605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A pap-smear analysis tool (PAT) for detection of cervical cancer from pap-smear images.
    William W; Ware A; Basaza-Ejiri AH; Obungoloch J
    Biomed Eng Online; 2019 Feb; 18(1):16. PubMed ID: 30755214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reproducibility of F18-FDG PET radiomic features for different cervical tumor segmentation methods, gray-level discretization, and reconstruction algorithms.
    Altazi BA; Zhang GG; Fernandez DC; Montejo ME; Hunt D; Werner J; Biagioli MC; Moros EG
    J Appl Clin Med Phys; 2017 Nov; 18(6):32-48. PubMed ID: 28891217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.