These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
321 related articles for article (PubMed ID: 31069685)
61. Repair activities of human 8-oxoguanine DNA glycosylase are stimulated by the interaction with human checkpoint sensor Rad9-Rad1-Hus1 complex. Park MJ; Park JH; Hahm SH; Ko SI; Lee YR; Chung JH; Sohn SY; Cho Y; Kang LW; Han YS DNA Repair (Amst); 2009 Oct; 8(10):1190-200. PubMed ID: 19615952 [TBL] [Abstract][Full Text] [Related]
62. Mechanism of interaction between human 8-oxoguanine-DNA glycosylase and AP endonuclease. Sidorenko VS; Nevinsky GA; Zharkov DO DNA Repair (Amst); 2007 Mar; 6(3):317-28. PubMed ID: 17126083 [TBL] [Abstract][Full Text] [Related]
63. 8-Oxoguanine DNA glycosylase 1 (OGG1) from the copepod Tigriopus japonicus: molecular characterization and its expression in response to UV-B and heavy metals. Kim BM; Rhee JS; Seo JS; Kim IC; Lee YM; Lee JS Comp Biochem Physiol C Toxicol Pharmacol; 2012 Mar; 155(2):290-9. PubMed ID: 21983336 [TBL] [Abstract][Full Text] [Related]
64. Expression of 8-oxoguanine glycosylase in human fetal membranes. Menon R; Polettini J; Syed TA; Saade GR; Boldogh I Am J Reprod Immunol; 2014 Jul; 72(1):75-84. PubMed ID: 24589083 [TBL] [Abstract][Full Text] [Related]
65. No major role for 7,8-dihydro-8-oxoguanine in ultraviolet light-induced mutagenesis. Kappes UP; Rünger TM Radiat Res; 2005 Oct; 164(4 Pt 1):440-5. PubMed ID: 16187746 [TBL] [Abstract][Full Text] [Related]
67. Age-related and tissue-specific accumulation of oxidative DNA base damage in 7,8-dihydro-8-oxoguanine-DNA glycosylase (Ogg1) deficient mice. Osterod M; Hollenbach S; Hengstler JG; Barnes DE; Lindahl T; Epe B Carcinogenesis; 2001 Sep; 22(9):1459-63. PubMed ID: 11532868 [TBL] [Abstract][Full Text] [Related]
68. Mitochondrial maintenance under oxidative stress depends on mitochondrially localised α-OGG1. Lia D; Reyes A; de Melo Campos JTA; Piolot T; Baijer J; Radicella JP; Campalans A J Cell Sci; 2018 Jun; 131(12):. PubMed ID: 29848661 [TBL] [Abstract][Full Text] [Related]
69. Deficiency of MTH1 and/or OGG1 increases the accumulation of 8-oxoguanine in the brain of the App Mizuno Y; Abolhassani N; Mazzei G; Saito T; Saido TC; Yamasaki R; Kira JI; Nakabeppu Y Neurosci Res; 2022 Apr; 177():118-134. PubMed ID: 34838904 [TBL] [Abstract][Full Text] [Related]
70. Identification of key residues of the DNA glycosylase OGG1 controlling efficient DNA sampling and recruitment to oxidized bases in living cells. D'Augustin O; Gaudon V; Siberchicot C; Smith R; Chapuis C; Depagne J; Veaute X; Busso D; Di Guilmi AM; Castaing B; Radicella JP; Campalans A; Huet S Nucleic Acids Res; 2023 Jun; 51(10):4942-4958. PubMed ID: 37021552 [TBL] [Abstract][Full Text] [Related]
71. HDAC1 modulates OGG1-initiated oxidative DNA damage repair in the aging brain and Alzheimer's disease. Pao PC; Patnaik D; Watson LA; Gao F; Pan L; Wang J; Adaikkan C; Penney J; Cam HP; Huang WC; Pantano L; Lee A; Nott A; Phan TX; Gjoneska E; Elmsaouri S; Haggarty SJ; Tsai LH Nat Commun; 2020 May; 11(1):2484. PubMed ID: 32424276 [TBL] [Abstract][Full Text] [Related]
72. Baicalein (5,6,7-trihydroxyflavone) reduces oxidative stress-induced DNA damage by upregulating the DNA repair system. Kim KC; Lee IK; Kang KA; Kim HS; Kang SS; Hyun JW Cell Biol Toxicol; 2012 Dec; 28(6):421-33. PubMed ID: 23011636 [TBL] [Abstract][Full Text] [Related]
73. DNA sequence context effects on the glycosylase activity of human 8-oxoguanine DNA glycosylase. Sassa A; Beard WA; Prasad R; Wilson SH J Biol Chem; 2012 Oct; 287(44):36702-10. PubMed ID: 22989888 [TBL] [Abstract][Full Text] [Related]
74. Opposite base-dependent reactions of a human base excision repair enzyme on DNA containing 7,8-dihydro-8-oxoguanine and abasic sites. Bjorâs M; Luna L; Johnsen B; Hoff E; Haug T; Rognes T; Seeberg E EMBO J; 1997 Oct; 16(20):6314-22. PubMed ID: 9321410 [TBL] [Abstract][Full Text] [Related]
75. 8-Oxoguanine DNA glycosylase 1: Beyond repair of the oxidatively modified base lesions. Ba X; Boldogh I Redox Biol; 2018 Apr; 14():669-678. PubMed ID: 29175754 [TBL] [Abstract][Full Text] [Related]
76. Linking oxidative DNA lesion 8-OxoG to tumor development and progression. Zhao Y; Wang CX; Yang TM; Li CS; Zhang LH; Du DN; Wang RX; Wang J; Wei M; Ba XQ Yi Chuan; 2022 Jun; 44(6):466-477. PubMed ID: 35729095 [TBL] [Abstract][Full Text] [Related]
77. OGG1-DNA interactions facilitate NF-κB binding to DNA targets. Pan L; Hao W; Zheng X; Zeng X; Ahmed Abbasi A; Boldogh I; Ba X Sci Rep; 2017 Mar; 7():43297. PubMed ID: 28266569 [TBL] [Abstract][Full Text] [Related]
78. Aerobic endurance capacity affects spatial memory and SIRT1 is a potent modulator of 8-oxoguanine repair. Sarga L; Hart N; Koch LG; Britton SL; Hajas G; Boldogh I; Ba X; Radak Z Neuroscience; 2013 Nov; 252():326-36. PubMed ID: 23973402 [TBL] [Abstract][Full Text] [Related]
79. Ionic strength and magnesium affect the specificity of Escherichia coli and human 8-oxoguanine-DNA glycosylases. Sidorenko VS; Mechetin GV; Nevinsky GA; Zharkov DO FEBS J; 2008 Aug; 275(15):3747-60. PubMed ID: 18557781 [TBL] [Abstract][Full Text] [Related]
80. Innate inflammation induced by the 8-oxoguanine DNA glycosylase-1-KRAS-NF-κB pathway. Aguilera-Aguirre L; Bacsi A; Radak Z; Hazra TK; Mitra S; Sur S; Brasier AR; Ba X; Boldogh I J Immunol; 2014 Nov; 193(9):4643-53. PubMed ID: 25267977 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]