BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 31069773)

  • 1. Interrogation of Functional Mitochondrial Cysteine Residues by Quantitative Mass Spectrometry.
    Bak DW; Weerapana E
    Methods Mol Biol; 2019; 1967():211-227. PubMed ID: 31069773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isotopically-Labeled Iodoacetamide-Alkyne Probes for Quantitative Cysteine-Reactivity Profiling.
    Abo M; Li C; Weerapana E
    Mol Pharm; 2018 Mar; 15(3):743-749. PubMed ID: 29172527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identifying Functional Cysteine Residues in the Mitochondria.
    Bak DW; Pizzagalli MD; Weerapana E
    ACS Chem Biol; 2017 Apr; 12(4):947-957. PubMed ID: 28157297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Site-Specific Proteomic Mapping of Modified Cysteine Residues.
    Gould NS
    Methods Mol Biol; 2019; 1967():183-195. PubMed ID: 31069771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Quantitative Mass-Spectrometry Platform to Monitor Changes in Cysteine Reactivity.
    Qian Y; Weerapana E
    Methods Mol Biol; 2017; 1491():11-22. PubMed ID: 27778278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative Persulfide Site Identification (qPerS-SID) Reveals Protein Targets of H2S Releasing Donors in Mammalian Cells.
    Longen S; Richter F; Köhler Y; Wittig I; Beck KF; Pfeilschifter J
    Sci Rep; 2016 Jul; 6():29808. PubMed ID: 27411966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteomic analysis and functional characterization of mouse brain mitochondria during aging reveal alterations in energy metabolism.
    Stauch KL; Purnell PR; Villeneuve LM; Fox HS
    Proteomics; 2015 May; 15(9):1574-86. PubMed ID: 25546256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Dimethyl-Labeling-Based Strategy for Site-Specifically Quantitative Chemical Proteomics.
    Yang F; Gao J; Che J; Jia G; Wang C
    Anal Chem; 2018 Aug; 90(15):9576-9582. PubMed ID: 29989794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identifying Redox-Sensitive Cysteine Residues in Mitochondria.
    Kisty EA; Saart EC; Weerapana E
    Antioxidants (Basel); 2023 Apr; 12(5):. PubMed ID: 37237858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential cysteine labeling and global label-free proteomics reveals an altered metabolic state in skeletal muscle aging.
    McDonagh B; Sakellariou GK; Smith NT; Brownridge P; Jackson MJ
    J Proteome Res; 2014 Nov; 13(11):5008-21. PubMed ID: 25181601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteome-Wide Profiling of Targets of Cysteine reactive Small Molecules by Using Ethynyl Benziodoxolone Reagents.
    Abegg D; Frei R; Cerato L; Prasad Hari D; Wang C; Waser J; Adibekian A
    Angew Chem Int Ed Engl; 2015 Sep; 54(37):10852-7. PubMed ID: 26211368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteomic analysis of brain mitochondrial proteome and mitochondrial complexes.
    Lopez-Campistrous A; Fernandez-Patron C
    Methods Mol Biol; 2013; 1005():129-41. PubMed ID: 23606254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cysteine Reactivity Profiling to Unveil Redox Regulation in Phytopathogens.
    Morimoto K; Stegmann M; Kaschani F; Mohammed S; van der Hoorn RAL
    Methods Mol Biol; 2022; 2447():105-117. PubMed ID: 35583776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteome-wide analysis of cysteine oxidation reveals metabolic sensitivity to redox stress.
    van der Reest J; Lilla S; Zheng L; Zanivan S; Gottlieb E
    Nat Commun; 2018 Apr; 9(1):1581. PubMed ID: 29679077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Advances in applications of activity-based chemical probes in the characterization of amino acid reactivities].
    Li J; Wang G; Ye M; Qin H
    Se Pu; 2023 Jan; 41(1):14-23. PubMed ID: 36633073
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cysteine reactivity across the subcellular universe.
    Bak DW; Bechtel TJ; Falco JA; Weerapana E
    Curr Opin Chem Biol; 2019 Feb; 48():96-105. PubMed ID: 30508703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox regulation of mitochondrial proteins and proteomes by cysteine thiol switches.
    Nietzel T; Mostertz J; Hochgräfe F; Schwarzländer M
    Mitochondrion; 2017 Mar; 33():72-83. PubMed ID: 27456428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SP3-FAIMS-Enabled High-Throughput Quantitative Profiling of the Cysteinome.
    Desai HS; Yan T; Backus KM
    Curr Protoc; 2022 Jul; 2(7):e492. PubMed ID: 35895291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gel-based mass spectrometric and computational approaches to the mitochondrial proteome of Neurospora.
    Keeping A; Deabreu D; Dibernardo M; Collins RA
    Fungal Genet Biol; 2011 May; 48(5):526-36. PubMed ID: 21145408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of the host cell mitochondrial proteome by PemK
    Mir DA; Balamurugan K
    Microb Pathog; 2020 Mar; 140():103963. PubMed ID: 31911194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.