BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 31069773)

  • 41. Mapping the cysteine proteome: analysis of redox-sensing thiols.
    Jones DP; Go YM
    Curr Opin Chem Biol; 2011 Feb; 15(1):103-12. PubMed ID: 21216657
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Radiolytic modification of sulfur-containing amino acid residues in model peptides: fundamental studies for protein footprinting.
    Xu G; Chance MR
    Anal Chem; 2005 Apr; 77(8):2437-49. PubMed ID: 15828779
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dual Labeling Biotin Switch Assay to Reduce Bias Derived From Different Cysteine Subpopulations: A Method to Maximize S-Nitrosylation Detection.
    Chung HS; Murray CI; Venkatraman V; Crowgey EL; Rainer PP; Cole RN; Bomgarden RD; Rogers JC; Balkan W; Hare JM; Kass DA; Van Eyk JE
    Circ Res; 2015 Oct; 117(10):846-57. PubMed ID: 26338901
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cysteine tagging for MS-based proteomics.
    Giron P; Dayon L; Sanchez JC
    Mass Spectrom Rev; 2011; 30(3):366-95. PubMed ID: 21500242
    [TBL] [Abstract][Full Text] [Related]  

  • 45. SP3-Enabled Rapid and High Coverage Chemoproteomic Identification of Cell-State-Dependent Redox-Sensitive Cysteines.
    Desai HS; Yan T; Yu F; Sun AW; Villanueva M; Nesvizhskii AI; Backus KM
    Mol Cell Proteomics; 2022 Apr; 21(4):100218. PubMed ID: 35219905
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The Proteome-Wide Potential for Reversible Covalency at Cysteine.
    Senkane K; Vinogradova EV; Suciu RM; Crowley VM; Zaro BW; Bradshaw JM; Brameld KA; Cravatt BF
    Angew Chem Int Ed Engl; 2019 Aug; 58(33):11385-11389. PubMed ID: 31222866
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mass spectrometry-based quantitative proteomic profiling.
    Yan W; Chen SS
    Brief Funct Genomic Proteomic; 2005 May; 4(1):27-38. PubMed ID: 15975262
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The use of a quantitative cysteinyl-peptide enrichment technology for high-throughput quantitative proteomics.
    Liu T; Qian WJ; Camp DG; Smith RD
    Methods Mol Biol; 2007; 359():107-24. PubMed ID: 17484113
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mix-and-Match Proteomics: Using Advanced Iodoacetyl Tandem Mass Tag Multiplexing To Investigate Cysteine Oxidation Changes with Respect to Protein Expression.
    Prakash AS; Kabli AMF; Bulleid N; Burchmore R
    Anal Chem; 2018 Dec; 90(24):14173-14180. PubMed ID: 30452864
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Proteomic analysis of mitochondria from senescent Podospora anserina casts new light on ROS dependent aging mechanisms.
    Plohnke N; Hamann A; Poetsch A; Osiewacz HD; Rögner M; Rexroth S
    Exp Gerontol; 2014 Aug; 56():13-25. PubMed ID: 24556281
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A Dual-Purpose Bromocoumarin Tag Enables Deep Profiling of the Cellular Cysteinome.
    Rabalski AJ; Williams JD; McClure RA; Vasudevan A; Baranczak A
    Proteomics; 2019 Jun; 19(11):e1800433. PubMed ID: 30784174
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sucrose gradient chromatin enrichment for quantitative proteomics analysis in budding yeast.
    Challa K; Seebacher J; Gasser SM
    STAR Protoc; 2021 Dec; 2(4):100825. PubMed ID: 34568845
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Proteomics Analysis of Colorectal Cancer Cells.
    Chauvin A; Boisvert FM
    Methods Mol Biol; 2018; 1765():155-166. PubMed ID: 29589306
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Quantitative Chemoproteomic Profiling with Data-Independent Acquisition-Based Mass Spectrometry.
    Yang F; Jia G; Guo J; Liu Y; Wang C
    J Am Chem Soc; 2022 Jan; 144(2):901-911. PubMed ID: 34986311
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Reimagining high-throughput profiling of reactive cysteines for cell-based screening of large electrophile libraries.
    Kuljanin M; Mitchell DC; Schweppe DK; Gikandi AS; Nusinow DP; Bulloch NJ; Vinogradova EV; Wilson DL; Kool ET; Mancias JD; Cravatt BF; Gygi SP
    Nat Biotechnol; 2021 May; 39(5):630-641. PubMed ID: 33398154
    [TBL] [Abstract][Full Text] [Related]  

  • 56. MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry-based proteomics.
    Kong AT; Leprevost FV; Avtonomov DM; Mellacheruvu D; Nesvizhskii AI
    Nat Methods; 2017 May; 14(5):513-520. PubMed ID: 28394336
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Characterization of Glutamine Deamidation by Long-Length Electrostatic Repulsion-Hydrophilic Interaction Chromatography-Tandem Mass Spectrometry (LERLIC-MS/MS) in Shotgun Proteomics.
    Serra A; Gallart-Palau X; Wei J; Sze SK
    Anal Chem; 2016 Nov; 88(21):10573-10582. PubMed ID: 27689507
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Experimental Null Method to Guide the Development of Technical Procedures and to Control False-Positive Discovery in Quantitative Proteomics.
    Shen X; Hu Q; Li J; Wang J; Qu J
    J Proteome Res; 2015 Oct; 14(10):4147-57. PubMed ID: 26051676
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Proteome characterization of mouse brain mitochondria using electrospray ionization tandem mass spectrometry.
    Fang X; Lee CS
    Methods Enzymol; 2009; 457():49-62. PubMed ID: 19426861
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Sample multiplexing with cysteine-selective approaches: cysDML and cPILOT.
    Gu L; Evans AR; Robinson RA
    J Am Soc Mass Spectrom; 2015 Apr; 26(4):615-30. PubMed ID: 25588721
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.