These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 31070021)
1. Citrulline stimulates muscle protein synthesis, by reallocating ATP consumption to muscle protein synthesis. Goron A; Lamarche F; Blanchet S; Delangle P; Schlattner U; Fontaine E; Moinard C J Cachexia Sarcopenia Muscle; 2019 Aug; 10(4):919-928. PubMed ID: 31070021 [TBL] [Abstract][Full Text] [Related]
2. Synergistic effects of citrulline supplementation and exercise on performance in male rats: evidence for implication of protein and energy metabolisms. Goron A; Lamarche F; Cunin V; Dubouchaud H; Hourdé C; Noirez P; Corne C; Couturier K; Sève M; Fontaine E; Moinard C Clin Sci (Lond); 2017 Apr; 131(8):775-790. PubMed ID: 28250083 [No Abstract] [Full Text] [Related]
3. Palmitate-induced changes in energy demand cause reallocation of ATP supply in rat and human skeletal muscle cells. Nisr RB; Affourtit C Biochim Biophys Acta; 2016 Sep; 1857(9):1403-1411. PubMed ID: 27154056 [TBL] [Abstract][Full Text] [Related]
4. Relationship between the rate of citrulline synthesis and bulk changes in the intramitochondrial ATP/ADP ratio in rat-liver mitochondria. Wanders RJ; Van Woerkom GM; Nooteboom RF; Meijer AJ; Tager JM Eur J Biochem; 1981 Jan; 113(2):295-302. PubMed ID: 7202412 [TBL] [Abstract][Full Text] [Related]
5. Competition between extramitochondrial and intramitochondrial ATP-consuming processes. Letko G; Küster U Acta Biol Med Ger; 1979; 38(10):1379-85. PubMed ID: 162025 [TBL] [Abstract][Full Text] [Related]
6. A hierarchy of ATP-consuming processes in mammalian cells. Buttgereit F; Brand MD Biochem J; 1995 Nov; 312 ( Pt 1)(Pt 1):163-7. PubMed ID: 7492307 [TBL] [Abstract][Full Text] [Related]
7. Impact of 3-week citrulline supplementation on postprandial protein metabolism in malnourished older patients: The Ciproage randomized controlled trial. Bouillanne O; Melchior JC; Faure C; Paul M; Canouï-Poitrine F; Boirie Y; Chevenne D; Forasassi C; Guery E; Herbaud S; Le Corvoisier P; Neveux N; Nivet-Antoine V; Astier A; Raynaud-Simon A; Walrand S; Cynober L; Aussel C Clin Nutr; 2019 Apr; 38(2):564-574. PubMed ID: 29503060 [TBL] [Abstract][Full Text] [Related]
8. Relationship between the energy cost of ATP transport and ATP synthesis in mitochondria. Duszyński J; Bogucka K; Letko G; Küster U; Kunz W; Wojtczak L Biochim Biophys Acta; 1981 Sep; 637(2):217-23. PubMed ID: 7295709 [TBL] [Abstract][Full Text] [Related]
9. Direct or indirect regulation of muscle protein synthesis by energy status? Moinard C; Fontaine E Clin Nutr; 2021 Apr; 40(4):1893-1896. PubMed ID: 32788089 [TBL] [Abstract][Full Text] [Related]
10. Influence of different energy drains on the interrelationship between the rate of respiration, proton-motive force and adenine nucleotide patterns in isolated mitochondria. Küster U; Letko G; Kunz W; Duszyńsky J; Bogucka K; Wojtczak L Biochim Biophys Acta; 1981 Jun; 636(1):32-8. PubMed ID: 7284343 [TBL] [Abstract][Full Text] [Related]
11. Modulation of muscle protein synthesis by amino acids: what consequences for the secretome? A preliminary in vitro study. Goron A; Breuillard C; Cunin V; Bourgoin-Voillard S; Seve M; Moinard C Amino Acids; 2019 Nov; 51(10-12):1681-1688. PubMed ID: 31654208 [TBL] [Abstract][Full Text] [Related]
12. Effect of citrulline on muscle protein turnover in an in vitro model of muscle catabolism. Kuci O; Archambault E; Dodacki A; Nubret E; De Bandt JP; Cynober L Nutrition; 2020 Mar; 71():110597. PubMed ID: 31896062 [TBL] [Abstract][Full Text] [Related]
13. Nucleotide requirement and effects of fatty acids on protein synthesis and degradation in brown adipose tissue mitochondria. Desautels M; Dulos RA Can J Physiol Pharmacol; 1993 Jan; 71(1):17-25. PubMed ID: 8513430 [TBL] [Abstract][Full Text] [Related]
15. Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Rolfe DF; Brown GC Physiol Rev; 1997 Jul; 77(3):731-58. PubMed ID: 9234964 [TBL] [Abstract][Full Text] [Related]
16. Effect of insulin on human skeletal muscle mitochondrial ATP production, protein synthesis, and mRNA transcripts. Stump CS; Short KR; Bigelow ML; Schimke JM; Nair KS Proc Natl Acad Sci U S A; 2003 Jun; 100(13):7996-8001. PubMed ID: 12808136 [TBL] [Abstract][Full Text] [Related]
17. Citrulline enhances myofibrillar constituents expression of skeletal muscle and induces a switch in muscle energy metabolism in malnourished aged rats. Faure C; Morio B; Chafey P; Le Plénier S; Noirez P; Randrianarison-Huetz V; Cynober L; Aussel C; Moinard C Proteomics; 2013 Jul; 13(14):2191-201. PubMed ID: 23592530 [TBL] [Abstract][Full Text] [Related]
18. Downregulation of uncoupling protein-3 in vivo is linked to changes in muscle mitochondrial energy metabolism as a result of capsiate administration. Faraut B; Giannesini B; Matarazzo V; Marqueste T; Dalmasso C; Rougon G; Cozzone PJ; Bendahan D Am J Physiol Endocrinol Metab; 2007 May; 292(5):E1474-82. PubMed ID: 17264228 [TBL] [Abstract][Full Text] [Related]
19. Energy metabolism of rat skeletal muscle modulated by the rate of perfusion flow. Stefl B; Mejsnar JA; Janovská A Exp Physiol; 1999 Jul; 84(4):651-63. PubMed ID: 10481223 [TBL] [Abstract][Full Text] [Related]
20. Respiration uncoupling and metabolism in the control of energy expenditure. Ricquier D Proc Nutr Soc; 2005 Feb; 64(1):47-52. PubMed ID: 15877922 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]