BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 31070025)

  • 1. Optimizing Nucleophilic Depolymerization of Proanthocyanidins in Grape Seeds to Dimeric Proanthocyanidin B1 or B2.
    Wen KS; Ruan X; Wang J; Yang L; Wei F; Zhao YX; Wang Q
    J Agric Food Chem; 2019 May; 67(21):5978-5988. PubMed ID: 31070025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A semisynthetic approach for the simultaneous reaction of grape seed polymeric procyanidins with catechin and epicatechin to obtain oligomeric procyanidins in large scale.
    Bai R; Cui Y; Luo L; Yuan D; Wei Z; Yu W; Sun B
    Food Chem; 2019 Apr; 278():609-616. PubMed ID: 30583419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel Antihypertensive Prodrug from Grape Seed Proanthocyanidin Extract via Acid-Mediated Depolymerization in the Presence of Captopril: Synthesis, Process Optimization, and Metabolism in Rats.
    Cui C; Shi A; Bai S; Yan P; Li Q; Bi K
    J Agric Food Chem; 2018 Apr; 66(14):3700-3707. PubMed ID: 29569905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An approach for degradation of grape seed and skin proanthocyanidin polymers into oligomers by sulphurous acid.
    Luo L; Cui Y; Cheng J; Fang B; Wei Z; Sun B
    Food Chem; 2018 Aug; 256():203-211. PubMed ID: 29606439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A preliminary characterization of Aglianico (Vitis vinifera L. cv.) grape proanthocyanidins and evaluation of their reactivity towards salivary proteins.
    Rinaldi A; Jourdes M; Teissedre PL; Moio L
    Food Chem; 2014 Dec; 164():142-9. PubMed ID: 24996317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of the Extraction of Proanthocyanidins from Grape Seeds Using Ultrasonication-Assisted Aqueous Ethanol and Evaluation of Anti-Steatosis Activity In Vitro.
    Thilakarathna WPDW; Rupasinghe HPV
    Molecules; 2022 Feb; 27(4):. PubMed ID: 35209151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Grape variety effect on proanthocyanidin composition and sensory perception of skin and seed tannin extracts from bordeaux wine grapes (Cabernet Sauvignon and Merlot) for two consecutive vintages (2006 and 2007).
    Chira K; Schmauch G; Saucier C; Fabre S; Teissedre PL
    J Agric Food Chem; 2009 Jan; 57(2):545-53. PubMed ID: 19105642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of Catechin and Proanthocyanidin Recovery from Grape Seeds Using Microwave-Assisted Extraction.
    Chen J; Thilakarathna WPDW; Astatkie T; Rupasinghe HPV
    Biomolecules; 2020 Feb; 10(2):. PubMed ID: 32033405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel Catechin-Tiopronin Conjugates Derived from Grape Seed Proanthocyanidin Degradation: Process Optimization, High-Speed Counter-Current Chromatography Preparation, as Well as Antibacterial Activity.
    Suo H; Tian R; Xu W; Li L; Cui Y; Zhang S; Sun B
    J Agric Food Chem; 2019 Oct; 67(41):11508-11517. PubMed ID: 31538478
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cocoa and Grape Seed Byproducts as a Source of Antioxidant and Anti-Inflammatory Proanthocyanidins.
    Cádiz-Gurrea ML; Borrás-Linares I; Lozano-Sánchez J; Joven J; Fernández-Arroyo S; Segura-Carretero A
    Int J Mol Sci; 2017 Feb; 18(2):. PubMed ID: 28208630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monomeric, oligomeric, and polymeric flavan-3-ol composition of wines and grapes from Vitis vinifera L. Cv. Graciano, Tempranillo, and Cabernet Sauvignon.
    Monagas M; Gómez-Cordovés C; Bartolomé B; Laureano O; Ricardo da Silva JM
    J Agric Food Chem; 2003 Oct; 51(22):6475-81. PubMed ID: 14558765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioavailability of red wine and grape seed proanthocyanidins in rats.
    Pereira-Caro G; Gaillet S; Ordóñez JL; Mena P; Bresciani L; Bindon KA; Del Rio D; Rouanet JM; Moreno-Rojas JM; Crozier A
    Food Funct; 2020 May; 11(5):3986-4001. PubMed ID: 32347279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extraction yields and anti-oxidant activity of proanthocyanidins from different parts of grape pomace: effect of mechanical treatments.
    de Sá M; Justino V; Spranger MI; Zhao YQ; Han L; Sun BS
    Phytochem Anal; 2014; 25(2):134-40. PubMed ID: 24123351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparative HSCCC isolation of phloroglucinolysis products from grape seed polymeric proanthocyanidins as new powerful antioxidants.
    Zhang S; Cui Y; Li L; Li Y; Zhou P; Luo L; Sun B
    Food Chem; 2015 Dec; 188():422-9. PubMed ID: 26041213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Procyanidin B1 is detected in human serum after intake of proanthocyanidin-rich grape seed extract.
    Sano A; Yamakoshi J; Tokutake S; Tobe K; Kubota Y; Kikuchi M
    Biosci Biotechnol Biochem; 2003 May; 67(5):1140-3. PubMed ID: 12834296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. C18 core-shell column with in-series absorbance and fluorescence detection for simultaneous monitoring of changes in stilbenoid and proanthocyanidin concentrations during grape cane storage.
    Sáez V; Gayoso C; Riquelme S; Pérez J; Vergara C; Mardones C; von Baer D
    J Chromatogr B Analyt Technol Biomed Life Sci; 2018 Feb; 1074-1075():70-78. PubMed ID: 29331860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of consuming a grape seed supplement with abundant phenolic compounds on the oxidative status of healthy human volunteers.
    Grases F; Prieto RM; Fernández-Cabot RA; Costa-Bauzá A; Sánchez AM; Prodanov M
    Nutr J; 2015 Sep; 14():94. PubMed ID: 26353756
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction between grape-derived proanthocyanidins and cell wall material. 1. Effect on proanthocyanidin composition and molecular mass.
    Bindon KA; Smith PA; Kennedy JA
    J Agric Food Chem; 2010 Feb; 58(4):2520-8. PubMed ID: 20092254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in proanthocyanidin chain length in winelike model solutions.
    Vidal S; Cartalade D; Souquet JM; Fulcrand H; Cheynier V
    J Agric Food Chem; 2002 Apr; 50(8):2261-6. PubMed ID: 11929281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A galloylated dimeric proanthocyanidin from grape seed exhibits dentin biomodification potential.
    Phansalkar RS; Nam JW; Chen SN; McAlpine JB; Napolitano JG; Leme A; Vidal CM; Aguiar T; Bedran-Russo AK; Pauli GF
    Fitoterapia; 2015 Mar; 101():169-78. PubMed ID: 25542682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.