These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 31070034)

  • 1. Room-Temperature Chemoselective Reductive Alkylation of Amines Catalyzed by a Well-Defined Iron(II) Complex Using Hydrogen.
    Lator A; Gaillard QG; Mérel DS; Lohier JF; Gaillard S; Poater A; Renaud JL
    J Org Chem; 2019 Jun; 84(11):6813-6829. PubMed ID: 31070034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly active phosphine-free bifunctional iron complex for hydrogenation of bicarbonate and reductive amination.
    Thai TT; Mérel DS; Poater A; Gaillard S; Renaud JL
    Chemistry; 2015 May; 21(19):7066-70. PubMed ID: 25808542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iron- and Cobalt-Catalyzed Alkene Hydrogenation: Catalysis with Both Redox-Active and Strong Field Ligands.
    Chirik PJ
    Acc Chem Res; 2015 Jun; 48(6):1687-95. PubMed ID: 26042837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cyclopentadienone Iron Tricarbonyl Complexes-Catalyzed Hydrogen Transfer in Water.
    Ndiaye D; Coufourier S; Mbaye MD; Gaillard S; Renaud JL
    Molecules; 2020 Jan; 25(2):. PubMed ID: 31968608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bifunctional (cyclopentadienone)iron-tricarbonyl complexes: synthesis, computational studies and application in reductive amination.
    Moulin S; Dentel H; Pagnoux-Ozherelyeva A; Gaillard S; Poater A; Cavallo L; Lohier JF; Renaud JL
    Chemistry; 2013 Dec; 19(52):17881-90. PubMed ID: 24243783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Main-Group-Catalyzed Reductive Alkylation of Multiply Substituted Amines with Aldehydes Using H
    Hoshimoto Y; Kinoshita T; Hazra S; Ohashi M; Ogoshi S
    J Am Chem Soc; 2018 Jun; 140(23):7292-7300. PubMed ID: 29790343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iron-, Cobalt-, and Nickel-Catalyzed Asymmetric Transfer Hydrogenation and Asymmetric Hydrogenation of Ketones.
    Li YY; Yu SL; Shen WY; Gao JX
    Acc Chem Res; 2015 Sep; 48(9):2587-98. PubMed ID: 26301426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational Design of Iron Diphosphine Complexes with Pendant Amines for Hydrogenation of CO2 to Methanol: A Mimic of [NiFe] Hydrogenase.
    Chen X; Jing Y; Yang X
    Chemistry; 2016 Jun; 22(26):8897-902. PubMed ID: 27225505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nickel and iron pincer complexes as catalysts for the reduction of carbonyl compounds.
    Chakraborty S; Bhattacharya P; Dai H; Guan H
    Acc Chem Res; 2015 Jul; 48(7):1995-2003. PubMed ID: 26098431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. (Cyclopentadienone)iron Complexes: Synthesis, Mechanism and Applications in Organic Synthesis.
    Akter M; Anbarasan P
    Chem Asian J; 2021 Jul; 16(13):1703-1724. PubMed ID: 33999506
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Half-sandwich rare-earth-catalyzed olefin polymerization, carbometalation, and hydroarylation.
    Nishiura M; Guo F; Hou Z
    Acc Chem Res; 2015 Aug; 48(8):2209-20. PubMed ID: 26214733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of tertiary arylamines: Lewis acid-catalyzed direct reductive N-alkylation of secondary amines with ketones through an alternative pathway.
    Nayal OS; Thakur MS; Bhatt V; Kumar M; Kumar N; Singh B; Sharma U
    Chem Commun (Camb); 2016 Aug; 52(62):9648-51. PubMed ID: 27363507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cobalt Complexes as an Emerging Class of Catalysts for Homogeneous Hydrogenations.
    Liu W; Sahoo B; Junge K; Beller M
    Acc Chem Res; 2018 Aug; 51(8):1858-1869. PubMed ID: 30091891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of (Cyclopentadienone)iron Tricarbonyl Complexes for C-N Bond Formation Reactions between Amines and Alcohols.
    Brown TJ; Cumbes M; Diorazio LJ; Clarkson GJ; Wills M
    J Org Chem; 2017 Oct; 82(19):10489-10503. PubMed ID: 28921981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. General Synthesis of Secondary Alkylamines by Reductive Alkylation of Nitriles by Aldehydes and Ketones.
    Schönauer T; Thomä SLJ; Kaiser L; Zobel M; Kempe R
    Chemistry; 2021 Jan; 27(5):1609-1614. PubMed ID: 33236790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Synthesis of Primary Amines through Reductive Amination Employing an Iron Catalyst.
    Bäumler C; Bauer C; Kempe R
    ChemSusChem; 2020 Jun; 13(12):3110-3114. PubMed ID: 32314866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective Iron Catalyzed Synthesis of N-Alkylated Indolines and Indoles.
    Wu J; Tongdee S; Cordier M; Darcel C
    Chemistry; 2022 Sep; 28(54):e202201809. PubMed ID: 35700072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discovery and mechanistic studies of a general air-promoted metal-catalyzed aerobic N-alkylation reaction of amides and amines with alcohols.
    Liu C; Liao S; Li Q; Feng S; Sun Q; Yu X; Xu Q
    J Org Chem; 2011 Jul; 76(14):5759-73. PubMed ID: 21657274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High chemoselectivity of an advanced iron catalyst for the hydrogenation of aldehydes with isolated C═C bond: a computational study.
    Lu X; Cheng R; Turner N; Liu Q; Zhang M; Sun X
    J Org Chem; 2014 Oct; 79(19):9355-64. PubMed ID: 25222376
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Knölker's iron complex: an efficient in situ generated catalyst for reductive amination of alkyl aldehydes and amines.
    Pagnoux-Ozherelyeva A; Pannetier N; Mbaye MD; Gaillard S; Renaud JL
    Angew Chem Int Ed Engl; 2012 May; 51(20):4976-80. PubMed ID: 22489091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.