These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 31070215)

  • 1. Electrochemical modulation of plasmon-induced charge separation behaviour at Au-TiO
    Akiyoshi K; Tatsuma T
    Photochem Photobiol Sci; 2019 Jul; 18(7):1727-1731. PubMed ID: 31070215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrical tuning effect for Schottky barrier and hot-electron harvest in a plasmonic Au/TiO
    Sun Z; Fang Y
    Sci Rep; 2021 Jan; 11(1):338. PubMed ID: 33432085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solar hydrogen generation by a CdS-Au-TiO2 sandwich nanorod array enhanced with Au nanoparticle as electron relay and plasmonic photosensitizer.
    Li J; Cushing SK; Zheng P; Senty T; Meng F; Bristow AD; Manivannan A; Wu N
    J Am Chem Soc; 2014 Jun; 136(23):8438-49. PubMed ID: 24836347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogen evolution from water based on plasmon-induced charge separation at a TiO
    Kao KC; Kuroiwa Y; Nishi H; Tatsuma T
    Phys Chem Chem Phys; 2017 Nov; 19(46):31429-31435. PubMed ID: 29159348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hot Hole Collection and Photoelectrochemical CO
    DuChene JS; Tagliabue G; Welch AJ; Cheng WH; Atwater HA
    Nano Lett; 2018 Apr; 18(4):2545-2550. PubMed ID: 29522350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of localized surface plasmon/grating-coupled surface plasmon enhanced photocurrent in TiO2 thin films.
    Nootchanat S; Ninsonti H; Baba A; Ekgasit S; Thammacharoen C; Shinbo K; Kato K; Kaneko F
    Phys Chem Chem Phys; 2014 Nov; 16(44):24484-92. PubMed ID: 25308828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Properties of Plasmon-Induced Photoelectric Conversion on a TiO2/NiO p-n Junction with Au Nanoparticles.
    Nakamura K; Oshikiri T; Ueno K; Wang Y; Kamata Y; Kotake Y; Misawa H
    J Phys Chem Lett; 2016 Mar; 7(6):1004-9. PubMed ID: 26918679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct Imaging of Surface Plasmon-Driven Hot Electron Flux on the Au Nanoprism/TiO
    Lee H; Lee H; Park JY
    Nano Lett; 2019 Feb; 19(2):891-896. PubMed ID: 30608712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantifying Wavelength-Dependent Plasmonic Hot Carrier Energy Distributions at Metal/Semiconductor Interfaces.
    Yu Y; Wijesekara KD; Xi X; Willets KA
    ACS Nano; 2019 Mar; 13(3):3629-3637. PubMed ID: 30807695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time-dependent measurement of plasmon-induced charge separation on a gold nanoparticle/TiO
    Misaka T; Ohoyama H; Matsumoto T
    Sci Rep; 2022 Oct; 12(1):16678. PubMed ID: 36202906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoelectrochemical synthesis, optical properties and plasmon-induced charge separation behaviour of gold nanodumbbells on TiO₂.
    Katagi Y; Kazuma E; Tatsuma T
    Nanoscale; 2014 Nov; 6(23):14543-8. PubMed ID: 25350687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of particle size and annealing on plasmon-induced charge separation at self-assembled gold nanoparticle arrays.
    Kao KC; Nishi H; Tatsuma T
    Phys Chem Chem Phys; 2018 Jan; 20(5):3735-3740. PubMed ID: 29345701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoexcited Hot Electron Catalysis in Plasmon-Resonant Grating Structures with Platinum, Nickel, and Ruthenium Coatings.
    Aravind I; Wang YY; Wang Y; Li R; Cai Z; Zhao B; Zhang B; Weng S; Shahriar R; Cronin SB
    ACS Appl Mater Interfaces; 2024 Apr; 16(14):17393-17400. PubMed ID: 38563348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of Plasmon-Induced Photoelectrocatalytic Water Oxidation over Au/TiO
    Li H; Wang S; Wang M; Gao Y; Tang J; Zhao S; Chi H; Zhang P; Qu J; Fan F; Li C
    Angew Chem Int Ed Engl; 2022 Jul; 61(30):e202204272. PubMed ID: 35535639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wavelength- and efficiency-tunable plasmon-induced charge separation by the use of Au-Ag alloy nanoparticles.
    Nishi H; Torimoto T; Tatsuma T
    Phys Chem Chem Phys; 2015 Feb; 17(6):4042-6. PubMed ID: 25588198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hot plasmonic electrons for generation of enhanced photocurrent in gold-TiO2 nanocomposites.
    Brennan LJ; Purcell-Milton F; Salmeron AS; Zhang H; Govorov AO; Fedorov AV; Gun'ko YK
    Nanoscale Res Lett; 2015; 10():38. PubMed ID: 25852335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmonic Effects of Metallic Nanoparticles on Enhancing Performance of Perovskite Solar Cells.
    Luo Q; Zhang C; Deng X; Zhu H; Li Z; Wang Z; Chen X; Huang S
    ACS Appl Mater Interfaces; 2017 Oct; 9(40):34821-34832. PubMed ID: 28929738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Significant Broadband Photocurrent Enhancement by Au-CZTS Core-Shell Nanostructured Photocathodes.
    Zhang X; Wu X; Centeno A; Ryan MP; Alford NM; Riley DJ; Xie F
    Sci Rep; 2016 Mar; 6():23364. PubMed ID: 26997140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmon-induced charge separation at the interface between ITO nanoparticles and TiO
    Lee SH; Nishi H; Tatsuma T
    Phys Chem Chem Phys; 2019 Mar; 21(10):5674-5678. PubMed ID: 30799480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Switched photocurrent direction in Au/TiO2 bilayer thin films.
    Chen H; Liu G; Wang L
    Sci Rep; 2015 Jun; 5():10852. PubMed ID: 26028118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.