These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 31070276)

  • 1. 2D Freestanding Janus Gold Nanocrystal Superlattices.
    Shi Q; Gómez DE; Dong D; Sikdar D; Fu R; Liu Y; Zhao Y; Smilgies DM; Cheng W
    Adv Mater; 2019 Jul; 31(28):e1900989. PubMed ID: 31070276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Free-Standing 2D Janus Gold Nanoparticles Monolayer Film with Tunable Bifacial Morphologies via the Asymmetric Growth at Air-Liquid Interface.
    Cheng Q; Song L; Lin H; Yang Y; Huang Y; Su F; Chen T
    Langmuir; 2020 Jan; 36(1):250-256. PubMed ID: 31697894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-dimensional gold trisoctahedron nanoparticle superlattice sheets: self-assembly, characterization and immunosensing applications.
    Dong D; Yap LW; Smilgies DM; Si KJ; Shi Q; Cheng W
    Nanoscale; 2018 Mar; 10(11):5065-5071. PubMed ID: 29503999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-assembly of anisotropy gold nanocubes into large area two-dimensional monolayer superlattices.
    Li J; Liu X; Jin J; Yan N; Jiang W
    Nanotechnology; 2022 Jun; 33(38):. PubMed ID: 35697002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-assembly of high-index faceted gold nanocrystals to fabricate tunable coupled plasmonic superlattices.
    Zhang H; Guan C; Song N; Zhang Y; Liu H; Fang J
    Phys Chem Chem Phys; 2018 Jan; 20(5):3571-3580. PubMed ID: 29337328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-assembly and characterization of 2D plasmene nanosheets.
    Dong D; Fu R; Shi Q; Cheng W
    Nat Protoc; 2019 Sep; 14(9):2691-2706. PubMed ID: 31420600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A close-packed 3D plasmonic superlattice of truncated octahedral gold nanoframes.
    Yoon J; Jang HJ; Jung I; Park S
    Nanoscale; 2017 Jun; 9(23):7708-7713. PubMed ID: 28561118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Colloidal Self-Assembly of Inorganic Nanocrystals into Superlattice Thin-Films and Multiscale Nanostructures.
    Yun H; Paik T
    Nanomaterials (Basel); 2019 Sep; 9(9):. PubMed ID: 31480547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tunable orientation of two-dimensional assembled Au octahedron superlattices in polymer films as flexible SERS substrates.
    Tian XD; Zhang Y
    Nanoscale; 2023 Mar; 15(9):4317-4324. PubMed ID: 36762517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tunable SERS Platforms from Small Nanoparticle 3D Superlattices: A Comparison between Gold, Silver, and Copper.
    Chapus L; Aubertin P; Joiret S; Lucas IT; Maisonhaute E; Courty A
    Chemphyschem; 2017 Nov; 18(21):3066-3075. PubMed ID: 28862382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 2D Freestanding Janus Gold Nanocrystal Superlattices.
    Shi Q; Gómez DE; Dong D; Sikdar D; Fu R; Liu Y; Zhao Y; Smilgies DM; Cheng W
    Adv Mater; 2019 Sep; 31(37):e1904636. PubMed ID: 31503376
    [No Abstract]   [Full Text] [Related]  

  • 12. Hierarchical Fabrication of Plasmonic Superlattice Membrane by Aspect-Ratio Controllable Nanobricks for Label-Free Protein Detection.
    Chen Y; Liu H; Yin H; Zhu Q; Yao G; Gu N
    Front Chem; 2020; 8():307. PubMed ID: 32411663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bistable magnetoresistance switching in exchange-coupled CoFe₂O₄--Fe₃O₄ binary nanocrystal superlattices by self-assembly and thermal annealing.
    Chen J; Ye X; Oh SJ; Kikkawa JM; Kagan CR; Murray CB
    ACS Nano; 2013 Feb; 7(2):1478-86. PubMed ID: 23273052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 2D FeP Nanoframe Superlattices via Space-Confined Topochemical Transformation.
    Deng Y; Xi X; Xia Y; Cao Y; Xue S; Wan S; Dong A; Yang D
    Adv Mater; 2022 Mar; 34(10):e2109145. PubMed ID: 34982834
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measuring the surface-enhanced Raman scattering enhancement factors of hot spots formed between an individual Ag nanowire and a single Ag nanocube.
    Camargo PH; Cobley CM; Rycenga M; Xia Y
    Nanotechnology; 2009 Oct; 20(43):434020. PubMed ID: 19801754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tubular Monolayer Superlattices of Hollow Mn
    Li T; Xue B; Wang B; Guo G; Han D; Yan Y; Dong A
    J Am Chem Soc; 2017 Sep; 139(35):12133-12136. PubMed ID: 28837323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substitutional doping in nanocrystal superlattices.
    Cargnello M; Johnston-Peck AC; Diroll BT; Wong E; Datta B; Damodhar D; Doan-Nguyen VV; Herzing AA; Kagan CR; Murray CB
    Nature; 2015 Aug; 524(7566):450-3. PubMed ID: 26310766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural order in plasmonic superlattices.
    Schulz F; Pavelka O; Lehmkühler F; Westermeier F; Okamura Y; Mueller NS; Reich S; Lange H
    Nat Commun; 2020 Jul; 11(1):3821. PubMed ID: 32732893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials.
    Boles MA; Engel M; Talapin DV
    Chem Rev; 2016 Sep; 116(18):11220-89. PubMed ID: 27552640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anisotropic Cracking of Nanocrystal Superlattices.
    Diroll BT; Ma X; Wu Y; Murray CB
    Nano Lett; 2017 Oct; 17(10):6501-6506. PubMed ID: 28921994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.