BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 31070379)

  • 41. Subunits of the plastid ClpPR protease complex have differential contributions to embryogenesis, plastid biogenesis, and plant development in Arabidopsis.
    Kim J; Rudella A; Ramirez Rodriguez V; Zybailov B; Olinares PD; van Wijk KJ
    Plant Cell; 2009 Jun; 21(6):1669-92. PubMed ID: 19525416
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The purification of the Chlamydomonas reinhardtii chloroplast ClpP complex: additional subunits and structural features.
    Derrien B; Majeran W; Effantin G; Ebenezer J; Friso G; van Wijk KJ; Steven AC; Maurizi MR; Vallon O
    Plant Mol Biol; 2012 Sep; 80(2):189-202. PubMed ID: 22772861
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The Clp protease system; a central component of the chloroplast protease network.
    Olinares PD; Kim J; van Wijk KJ
    Biochim Biophys Acta; 2011 Aug; 1807(8):999-1011. PubMed ID: 21167127
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Structure, function, and substrates of Clp AAA+ protease systems in cyanobacteria, plastids, and apicoplasts: A comparative analysis.
    Bouchnak I; van Wijk KJ
    J Biol Chem; 2021; 296():100338. PubMed ID: 33497624
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The amino-terminal domain of chloroplast Hsp93 is important for its membrane association and functions in vivo.
    Chu CC; Li HM
    Plant Physiol; 2012 Apr; 158(4):1656-65. PubMed ID: 22353577
    [TBL] [Abstract][Full Text] [Related]  

  • 46. ClpC2 protects mycobacteria against a natural antibiotic targeting ClpC1-dependent protein degradation.
    Taylor G; Cui H; Leodolter J; Giese C; Weber-Ban E
    Commun Biol; 2023 Mar; 6(1):301. PubMed ID: 36944713
    [TBL] [Abstract][Full Text] [Related]  

  • 47.
    Marsee JD; Ridings A; Yu T; Miller JM
    Int J Mol Sci; 2018 Nov; 19(11):. PubMed ID: 30463272
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Consequences of the loss of catalytic triads in chloroplast CLPPR protease core complexes in vivo.
    Liao JR; Friso G; Kim J; van Wijk KJ
    Plant Direct; 2018 Oct; 2(10):e00086. PubMed ID: 31245686
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The E3 ligase AtCHIP positively regulates Clp proteolytic subunit homeostasis.
    Wei J; Qiu X; Chen L; Hu W; Hu R; Chen J; Sun L; Li L; Zhang H; Lv Z; Shen G
    J Exp Bot; 2015 Sep; 66(19):5809-20. PubMed ID: 26085677
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Temporal Proteomics of Inducible RNAi Lines of Clp Protease Subunits Identifies Putative Protease Substrates.
    Moreno JC; Martínez-Jaime S; Schwartzmann J; Karcher D; Tillich M; Graf A; Bock R
    Plant Physiol; 2018 Feb; 176(2):1485-1508. PubMed ID: 29229697
    [TBL] [Abstract][Full Text] [Related]  

  • 51. N-degron specificity of chloroplast ClpS1 in plants.
    Montandon C; Dougan DA; van Wijk KJ
    FEBS Lett; 2019 May; 593(9):962-970. PubMed ID: 30953344
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The Arabidopsis ClpB/Hsp100 family of proteins: chaperones for stress and chloroplast development.
    Lee U; Rioflorido I; Hong SW; Larkindale J; Waters ER; Vierling E
    Plant J; 2007 Jan; 49(1):115-27. PubMed ID: 17144892
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The unfoldase ClpC1 of
    Lunge A; Gupta R; Choudhary E; Agarwal N
    J Biol Chem; 2020 Jul; 295(28):9455-9473. PubMed ID: 32409584
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Clp protease complexes from photosynthetic and non-photosynthetic plastids and mitochondria of plants, their predicted three-dimensional structures, and functional implications.
    Peltier JB; Ripoll DR; Friso G; Rudella A; Cai Y; Ytterberg J; Giacomelli L; Pillardy J; van Wijk KJ
    J Biol Chem; 2004 Feb; 279(6):4768-81. PubMed ID: 14593120
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Control of Retrograde Signaling by Rapid Turnover of GENOMES UNCOUPLED1.
    Wu GZ; Chalvin C; Hoelscher M; Meyer EH; Wu XN; Bock R
    Plant Physiol; 2018 Mar; 176(3):2472-2495. PubMed ID: 29367233
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Interactome Analysis Identifies MSMEI_3879 as a Substrate of Mycolicibacterium smegmatis ClpC1.
    Ogbonna EC; Anderson HR; Beardslee PC; Bheemreddy P; Schmitz KR
    Microbiol Spectr; 2023 Aug; 11(4):e0454822. PubMed ID: 37341639
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Trapping and proteomic identification of cellular substrates of the ClpP protease in Staphylococcus aureus.
    Feng J; Michalik S; Varming AN; Andersen JH; Albrecht D; Jelsbak L; Krieger S; Ohlsen K; Hecker M; Gerth U; Ingmer H; Frees D
    J Proteome Res; 2013 Feb; 12(2):547-58. PubMed ID: 23253041
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Clp protease controls chlorophyll b synthesis by regulating the level of chlorophyllide a oxygenase.
    Nakagawara E; Sakuraba Y; Yamasato A; Tanaka R; Tanaka A
    Plant J; 2007 Mar; 49(5):800-9. PubMed ID: 17291312
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The stroma of higher plant plastids contain ClpP and ClpC, functional homologs of Escherichia coli ClpP and ClpA: an archetypal two-component ATP-dependent protease.
    Shanklin J; DeWitt ND; Flanagan JM
    Plant Cell; 1995 Oct; 7(10):1713-22. PubMed ID: 7580259
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Insights into the Clp/HSP100 chaperone system from chloroplasts of Arabidopsis thaliana.
    Rosano GL; Bruch EM; Ceccarelli EA
    J Biol Chem; 2011 Aug; 286(34):29671-80. PubMed ID: 21737456
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.