These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 31070379)

  • 61. NblA, a key protein of phycobilisome degradation, interacts with ClpC, a HSP100 chaperone partner of a cyanobacterial Clp protease.
    Karradt A; Sobanski J; Mattow J; Lockau W; Baier K
    J Biol Chem; 2008 Nov; 283(47):32394-403. PubMed ID: 18818204
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Mycobacterium tuberculosis ClpC1: characterization and role of the N-terminal domain in its function.
    Kar NP; Sikriwal D; Rath P; Choudhary RK; Batra JK
    FEBS J; 2008 Dec; 275(24):6149-58. PubMed ID: 19016865
    [TBL] [Abstract][Full Text] [Related]  

  • 63. ClpC1, an ATP-dependent Clp protease in plastids, is involved in iron homeostasis in Arabidopsis leaves.
    Wu H; Ji Y; Du J; Kong D; Liang H; Ling HQ
    Ann Bot; 2010 May; 105(5):823-33. PubMed ID: 20382967
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A nuclear-encoded ClpP subunit of the chloroplast ATP-dependent Clp protease is essential for early development in Arabidopsis thaliana.
    Zheng B; MacDonald TM; Sutinen S; Hurry V; Clarke AK
    Planta; 2006 Oct; 224(5):1103-15. PubMed ID: 16705403
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Substrate delivery by the AAA+ ClpX and ClpC1 unfoldases activates the mycobacterial ClpP1P2 peptidase.
    Schmitz KR; Sauer RT
    Mol Microbiol; 2014 Aug; 93(4):617-28. PubMed ID: 24976069
    [TBL] [Abstract][Full Text] [Related]  

  • 66. ClgR, a novel regulator of clp and lon expression in Streptomyces.
    Bellier A; Mazodier P
    J Bacteriol; 2004 May; 186(10):3238-48. PubMed ID: 15126487
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Structural features of the plant N-recognin ClpS1 and sequence determinants in its targets that govern substrate selection.
    Aguilar Lucero D; Cantoia A; Sánchez-López C; Binolfi A; Mogk A; Ceccarelli EA; Rosano GL
    FEBS Lett; 2021 Jun; 595(11):1525-1541. PubMed ID: 33792910
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Discovery of AAA+ Protease Substrates through Trapping Approaches.
    Rei Liao JY; van Wijk KJ
    Trends Biochem Sci; 2019 Jun; 44(6):528-545. PubMed ID: 30773324
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Structure and function of a novel type of ATP-dependent Clp protease.
    Andersson FI; Tryggvesson A; Sharon M; Diemand AV; Classen M; Best C; Schmidt R; Schelin J; Stanne TM; Bukau B; Robinson CV; Witt S; Mogk A; Clarke AK
    J Biol Chem; 2009 May; 284(20):13519-13532. PubMed ID: 19237538
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The C-terminus of ClpC1 of Mycobacterium tuberculosis is crucial for its oligomerization and function.
    Bajaj D; Batra JK
    PLoS One; 2012; 7(12):e51261. PubMed ID: 23284674
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A stromal Hsp100 protein is required for normal chloroplast development and function in Arabidopsis.
    Constan D; Froehlich JE; Rangarajan S; Keegstra K
    Plant Physiol; 2004 Nov; 136(3):3605-15. PubMed ID: 15516497
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Antibacterial peptide CyclomarinA creates toxicity by deregulating the Mycobacterium tuberculosis ClpC1-ClpP1P2 protease.
    Taylor G; Frommherz Y; Katikaridis P; Layer D; Sinning I; Carroni M; Weber-Ban E; Mogk A
    J Biol Chem; 2022 Aug; 298(8):102202. PubMed ID: 35768046
    [TBL] [Abstract][Full Text] [Related]  

  • 73. PROGRAMMED CELL DEATH8 interacts with tetrapyrrole biosynthesis enzymes and ClpC1 to maintain homeostasis of tetrapyrrole metabolites in Arabidopsis.
    Geng R; Pang X; Li X; Shi S; Hedtke B; Grimm B; Bock R; Huang J; Zhou W
    New Phytol; 2023 Jun; 238(6):2545-2560. PubMed ID: 36967598
    [TBL] [Abstract][Full Text] [Related]  

  • 74. CtsR, a novel regulator of stress and heat shock response, controls clp and molecular chaperone gene expression in gram-positive bacteria.
    Derré I; Rapoport G; Msadek T
    Mol Microbiol; 1999 Jan; 31(1):117-31. PubMed ID: 9987115
    [TBL] [Abstract][Full Text] [Related]  

  • 75. ATP-dependent association between subunits of Clp protease in pea chloroplasts.
    Halperin T; Ostersetzer O; Adam Z
    Planta; 2001 Aug; 213(4):614-9. PubMed ID: 11556794
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The essential
    d'Andrea FB; Poulton NC; Froom R; Tam K; Campbell EA; Rock JM
    Sci Adv; 2022 May; 8(18):eabn7943. PubMed ID: 35507665
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Cargo engagement protects protease adaptors from degradation in a substrate-specific manner.
    Joshi KK; Sutherland M; Chien P
    J Biol Chem; 2017 Jun; 292(26):10973-10982. PubMed ID: 28507098
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Initial Characterization of the Two ClpP Paralogs of
    Wood NA; Chung KY; Blocker AM; Rodrigues de Almeida N; Conda-Sheridan M; Fisher DJ; Ouellette SP
    J Bacteriol; 2019 Jan; 201(2):. PubMed ID: 30396899
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Studying proteases and protein turnover in Arabidopsis chloroplasts.
    Sjögren LL; Clarke AK
    Methods Mol Biol; 2011; 774():225-40. PubMed ID: 21822843
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Phylogenetic analysis predicts structural divergence for proteobacterial ClpC proteins.
    Miller JM; Chaudhary H; Marsee JD
    J Struct Biol; 2018 Jan; 201(1):52-62. PubMed ID: 29129755
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.