These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 31070928)

  • 1. Near-Field Manipulation in a Scanning Tunneling Microscope Junction with Plasmonic Fabry-Pérot Tips.
    Böckmann H; Liu S; Müller M; Hammud A; Wolf M; Kumagai T
    Nano Lett; 2019 Jun; 19(6):3597-3602. PubMed ID: 31070928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Near-Field Spectral Response of Optically Excited Scanning Tunneling Microscope Junctions Probed by Single-Molecule Action Spectroscopy.
    Böckmann H; Müller M; Hammud A; Willinger MG; Pszona M; Waluk J; Wolf M; Kumagai T
    J Phys Chem Lett; 2019 May; 10(9):2068-2074. PubMed ID: 30964304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmon-Assisted Resonant Electron Tunneling in a Scanning Tunneling Microscope Junction.
    Liu S; Wolf M; Kumagai T
    Phys Rev Lett; 2018 Nov; 121(22):226802. PubMed ID: 30547648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metallic Carbon Nanotube Nanocavities as Ultracompact and Low-loss Fabry-Perot Plasmonic Resonators.
    Wang S; Wu F; Watanabe K; Taniguchi T; Zhou C; Wang F
    Nano Lett; 2020 Apr; 20(4):2695-2702. PubMed ID: 32134275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Near-Field Enhanced Photochemistry of Single Molecules in a Scanning Tunneling Microscope Junction.
    Böckmann H; Gawinkowski S; Waluk J; Raschke MB; Wolf M; Kumagai T
    Nano Lett; 2018 Jan; 18(1):152-157. PubMed ID: 29266954
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visualization of Nanoplasmonic Coupling to Molecular Orbital in Light Emission Induced by Tunneling Electrons.
    Yu A; Li S; Wang H; Chen S; Wu R; Ho W
    Nano Lett; 2018 May; 18(5):3076-3080. PubMed ID: 29660286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tip-Enhanced Raman Excitation Spectroscopy (TERES): Direct Spectral Characterization of the Gap-Mode Plasmon.
    Yang M; Mattei MS; Cherqui CR; Chen X; Van Duyne RP; Schatz GC
    Nano Lett; 2019 Oct; 19(10):7309-7316. PubMed ID: 31518135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabricating two-dimensional plasmonic photonic crystals for the modulation of nanocavity plasmon mode.
    Meng Q; Zhang Y; Cai H; Liao Y; Zhang Y; Wang X; Okamoto T; Dong Z
    Nanoscale; 2016 Dec; 8(45):18855-18859. PubMed ID: 27808322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gap plasmon modes and plasmon-exciton coupling in a hybrid Au/MoSe
    Alves E; Péchou R; Coratger R; Mlayah A
    Opt Express; 2023 Apr; 31(8):12549-12561. PubMed ID: 37157412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmon-enhanced ultraviolet photoluminescence from the hybrid plasmonic Fabry-Perot microcavity of Ag/ZnO microwires.
    Jiang MM; Zhao B; Chen HY; Zhao DX; Shan CX; Shen DZ
    Nanoscale; 2014; 6(3):1354-61. PubMed ID: 24292373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unveiling the radiative local density of optical states of a plasmonic nanocavity by STM.
    Martín-Jiménez A; Fernández-Domínguez AI; Lauwaet K; Granados D; Miranda R; García-Vidal FJ; Otero R
    Nat Commun; 2020 Feb; 11(1):1021. PubMed ID: 32094339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmonic Fabry-Pérot nanocavity.
    Sorger VJ; Oulton RF; Yao J; Bartal G; Zhang X
    Nano Lett; 2009 Oct; 9(10):3489-93. PubMed ID: 19673532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of silver tips for scanning tunneling microscope induced luminescence.
    Zhang C; Gao B; Chen LG; Meng QS; Yang H; Zhang R; Tao X; Gao HY; Liao Y; Dong ZC
    Rev Sci Instrum; 2011 Aug; 82(8):083101. PubMed ID: 21895227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescence of CoTPP Mediated by the Plasmon-Exciton Coupling Effect in the Tunneling Junction.
    Liu Y; Bian Y; Zhang Y; Hang C; Zhang X; Lou S; Jin Q
    J Phys Chem Lett; 2021 Jun; 12(22):5349-5356. PubMed ID: 34076440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular Tunnel Junction-Controlled High-Order Charge Transfer Plasmon and Fano Resonances.
    Cui X; Qin F; Lai Y; Wang H; Shao L; Chen H; Wang J; Lin HQ
    ACS Nano; 2018 Dec; 12(12):12541-12550. PubMed ID: 30462918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selectively Addressing Plasmonic Modes and Excitonic States in a Nanocavity Hosting a Quantum Emitter.
    Martín-Jiménez A; Jover Ó; Lauwaet K; Granados D; Miranda R; Otero R
    Nano Lett; 2022 Dec; 22(23):9283-9289. PubMed ID: 36441511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Near-Field Plasmonic Probe with Super Resolution and High Throughput and Signal-to-Noise Ratio.
    Jiang RH; Chen C; Lin DZ; Chou HC; Chu JY; Yen TJ
    Nano Lett; 2018 Feb; 18(2):881-885. PubMed ID: 29281295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient energy exchange between plasmon and cavity modes via Rabi-analogue splitting in a hybrid plasmonic nanocavity.
    Chen S; Li G; Lei D; Cheah KW
    Nanoscale; 2013 Oct; 5(19):9129-33. PubMed ID: 23913114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of nanocavity plasmonic emission by local molecular states of C60 on Au(111).
    Geng F; Zhang Y; Yu Y; Kuang Y; Liao Y; Dong Z; Hou J
    Opt Express; 2012 Nov; 20(24):26725-35. PubMed ID: 23187525
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunneling-Electron-Induced Light Emission from Single Gold Nanoclusters.
    Yu A; Li S; Czap G; Ho W
    Nano Lett; 2016 Sep; 16(9):5433-6. PubMed ID: 27529568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.