BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 31070958)

  • 1. Passive force enhancement in striated muscle.
    Herzog W
    J Appl Physiol (1985); 2019 Jun; 126(6):1782-1789. PubMed ID: 31070958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differences in titin segmental elongation between passive and active stretch in skeletal muscle.
    DuVall MM; Jinha A; Schappacher-Tilp G; Leonard TR; Herzog W
    J Exp Biol; 2017 Dec; 220(Pt 23):4418-4425. PubMed ID: 28970245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonuniform elasticity of titin in cardiac myocytes: a study using immunoelectron microscopy and cellular mechanics.
    Granzier H; Helmes M; Trombitás K
    Biophys J; 1996 Jan; 70(1):430-42. PubMed ID: 8770219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Force enhancement following stretch in a single sarcomere.
    Leonard TR; DuVall M; Herzog W
    Am J Physiol Cell Physiol; 2010 Dec; 299(6):C1398-401. PubMed ID: 20844251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of enhanced force production in lengthening (eccentric) muscle contractions.
    Herzog W
    J Appl Physiol (1985); 2014 Jun; 116(11):1407-17. PubMed ID: 23429875
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Passive force enhancement is not abolished by shortening of single rabbit psoas fibres.
    Liu S; Baptista de Oliveira Medeiros H; de Brito Fontana H; Herzog W
    J Biomech; 2022 Dec; 145():111386. PubMed ID: 36410203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sarcomere mechanics in striated muscles: from molecules to sarcomeres to cells.
    Rassier DE
    Am J Physiol Cell Physiol; 2017 Aug; 313(2):C134-C145. PubMed ID: 28539306
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A multi-scale continuum model of skeletal muscle mechanics predicting force enhancement based on actin-titin interaction.
    Heidlauf T; Klotz T; Rode C; Altan E; Bleiler C; Siebert T; Röhrle O
    Biomech Model Mechanobiol; 2016 Dec; 15(6):1423-1437. PubMed ID: 26935301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contracting striated muscle has a dynamic I-band spring with an undamped stiffness 100 times larger than the passive stiffness.
    Powers JD; Bianco P; Pertici I; Reconditi M; Lombardi V; Piazzesi G
    J Physiol; 2020 Jan; 598(2):331-345. PubMed ID: 31786814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of contraction in striated muscle.
    Gordon AM; Homsher E; Regnier M
    Physiol Rev; 2000 Apr; 80(2):853-924. PubMed ID: 10747208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mechanisms of the residual force enhancement after stretch of skeletal muscle: non-uniformity in half-sarcomeres and stiffness of titin.
    Rassier DE
    Proc Biol Sci; 2012 Jul; 279(1739):2705-13. PubMed ID: 22535786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of titin in eccentric muscle contraction.
    Herzog W
    J Exp Biol; 2014 Aug; 217(Pt 16):2825-33. PubMed ID: 25122914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Titin-induced force enhancement and force depression: a 'sticky-spring' mechanism in muscle contractions?
    Rode C; Siebert T; Blickhan R
    J Theor Biol; 2009 Jul; 259(2):350-60. PubMed ID: 19306884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Downsizing the molecular spring of the giant protein titin reveals that skeletal muscle titin determines passive stiffness and drives longitudinal hypertrophy.
    Brynnel A; Hernandez Y; Kiss B; Lindqvist J; Adler M; Kolb J; van der Pijl R; Gohlke J; Strom J; Smith J; Ottenheijm C; Granzier HL
    Elife; 2018 Dec; 7():. PubMed ID: 30565562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nebulin and titin modulate cross-bridge cycling and length-dependent calcium sensitivity.
    Mijailovich SM; Stojanovic B; Nedic D; Svicevic M; Geeves MA; Irving TC; Granzier HL
    J Gen Physiol; 2019 May; 151(5):680-704. PubMed ID: 30948421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The origin of passive force enhancement in skeletal muscle.
    Joumaa V; Rassier DE; Leonard TR; Herzog W
    Am J Physiol Cell Physiol; 2008 Jan; 294(1):C74-8. PubMed ID: 17928540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Residual and passive force enhancement in skinned cardiac fibre bundles.
    Boldt K; Han SW; Joumaa V; Herzog W
    J Biomech; 2020 Aug; 109():109953. PubMed ID: 32807325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the passive component of force enhancement following active stretching of skeletal muscle.
    Herzog W; Schachar R; Leonard TR
    J Exp Biol; 2003 Oct; 206(Pt 20):3635-43. PubMed ID: 12966055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiological functions of the giant elastic protein titin in mammalian striated muscle.
    Fukuda N; Granzier HL; Ishiwata S; Kurihara S
    J Physiol Sci; 2008 Jun; 58(3):151-9. PubMed ID: 18477421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical properties of titin isoforms.
    Granzier H; Helmes M; Cazorla O; McNabb M; Labeit D; Wu Y; Yamasaki R; Redkar A; Kellermayer M; Labeit S; Trombitás K
    Adv Exp Med Biol; 2000; 481():283-300; discussion 300-4. PubMed ID: 10987079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.