These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 31071365)

  • 1. Identification of regulatory variables for state transition of biological networks.
    Yuan M; Hong W; Li P
    Biosystems; 2019 Jul; 181():71-81. PubMed ID: 31071365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of optimal strategies for state transition of complex biological networks.
    Yuan M; Hong W; Li P
    Biochem Soc Trans; 2017 Aug; 45(4):1015-1024. PubMed ID: 28733488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An integer optimization algorithm for robust identification of non-linear gene regulatory networks.
    Chemmangattuvalappil N; Task K; Banerjee I
    BMC Syst Biol; 2012 Sep; 6():119. PubMed ID: 22937832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconciling periodic rhythms of large-scale biological networks by optimal control.
    Yuan M; Qu J; Hong W; Li P
    R Soc Open Sci; 2020 Jan; 7(1):191698. PubMed ID: 32218983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ILP/SMT-Based Method for Design of Boolean Networks Based on Singleton Attractors.
    Kobayashi K; Hiraishi K
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(6):1253-9. PubMed ID: 26357060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A parallel attractor-finding algorithm based on Boolean satisfiability for genetic regulatory networks.
    Guo W; Yang G; Wu W; He L; Sun M
    PLoS One; 2014; 9(4):e94258. PubMed ID: 24718686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [State regulation for complex biological networks based on dynamic optimization algorithms].
    Jie H; Yuan M; Zhu G; Hong W
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2020 Feb; 37(1):19-26. PubMed ID: 32096373
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of multilayer biological networks and applied to target identification of complex diseases.
    Zheng W; Wang D; Zou X
    BMC Bioinformatics; 2019 May; 20(1):271. PubMed ID: 31138124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Taming Asynchrony for Attractor Detection in Large Boolean Networks.
    Mizera A; Pang J; Qu H; Yuan Q
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(1):31-42. PubMed ID: 29994682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A geometrical approach to control and controllability of nonlinear dynamical networks.
    Wang LZ; Su RQ; Huang ZG; Wang X; Wang WX; Grebogi C; Lai YC
    Nat Commun; 2016 Apr; 7():11323. PubMed ID: 27076273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inferring Boolean networks with perturbation from sparse gene expression data: a general model applied to the interferon regulatory network.
    Yu L; Watterson S; Marshall S; Ghazal P
    Mol Biosyst; 2008 Oct; 4(10):1024-30. PubMed ID: 19082142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integer programming-based method for observability of singleton attractors in Boolean networks.
    Cheng X; Qiu Y; Hou W; Ching WK
    IET Syst Biol; 2017 Feb; 11(1):30-35. PubMed ID: 28303791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intervention in a family of Boolean networks.
    Choudhary A; Datta A; Bittner ML; Dougherty ER
    Bioinformatics; 2006 Jan; 22(2):226-32. PubMed ID: 16286362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene expression complex networks: synthesis, identification, and analysis.
    Lopes FM; Cesar RM; Costa Lda F
    J Comput Biol; 2011 Oct; 18(10):1353-67. PubMed ID: 21548810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recurrent neural network for non-smooth convex optimization problems with application to the identification of genetic regulatory networks.
    Cheng L; Hou ZG; Lin Y; Tan M; Zhang WC; Wu FX
    IEEE Trans Neural Netw; 2011 May; 22(5):714-26. PubMed ID: 21427022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intrinsic properties of Boolean dynamics in complex networks.
    Kinoshita S; Iguchi K; Yamada HS
    J Theor Biol; 2009 Feb; 256(3):351-69. PubMed ID: 19014957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Dynamic paradigm in psychopathology: "chaos theory", from physics to psychiatry].
    Pezard L; Nandrino JL
    Encephale; 2001; 27(3):260-8. PubMed ID: 11488256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. P_UNSAT approach of attractor calculation for Boolean gene regulatory networks.
    He Q; Xia Z; Lin B
    J Theor Biol; 2018 Jun; 447():171-177. PubMed ID: 29605228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene regulatory networks on transfer entropy (GRNTE): a novel approach to reconstruct gene regulatory interactions applied to a case study for the plant pathogen Phytophthora infestans.
    Castro JC; Valdés I; Gonzalez-García LN; Danies G; Cañas S; Winck FV; Ñústez CE; Restrepo S; Riaño-Pachón DM
    Theor Biol Med Model; 2019 Apr; 16(1):7. PubMed ID: 30961611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An efficient algorithm for computing fixed length attractors based on bounded model checking in synchronous Boolean networks with biochemical applications.
    Li XY; Yang GW; Zheng DS; Guo WS; Hung WN
    Genet Mol Res; 2015 Apr; 14(2):4238-44. PubMed ID: 25966195
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.