These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 31071411)

  • 1. In-cell single-molecule FRET measurements reveal three conformational state changes in RAF protein.
    Okamoto K; Hibino K; Sako Y
    Biochim Biophys Acta Gen Subj; 2020 Feb; 1864(2):129358. PubMed ID: 31071411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two Closed Conformations of CRAF Require the 14-3-3 Binding Motifs and Cysteine-Rich Domain to be Intact in Live Cells.
    Okamoto K; Sako Y
    J Mol Biol; 2023 Mar; 435(6):167989. PubMed ID: 36736888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A RasGTP-induced conformational change in C-RAF is essential for accurate molecular recognition.
    Hibino K; Shibata T; Yanagida T; Sako Y
    Biophys J; 2009 Sep; 97(5):1277-87. PubMed ID: 19720015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flow cytometric measurement of fluorescence (Förster) resonance energy transfer from cyan fluorescent protein to yellow fluorescent protein using single-laser excitation at 458 nm.
    He L; Bradrick TD; Karpova TS; Wu X; Fox MH; Fischer R; McNally JG; Knutson JR; Grammer AC; Lipsky PE
    Cytometry A; 2003 May; 53(1):39-54. PubMed ID: 12701131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alternating Laser Excitation for Solution-Based Single-Molecule FRET.
    Kapanidis A; Majumdar D; Heilemann M; Nir E; Weiss S
    Cold Spring Harb Protoc; 2015 Nov; 2015(11):979-87. PubMed ID: 26527772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alternating-laser excitation: single-molecule FRET and beyond.
    Hohlbein J; Craggs TD; Cordes T
    Chem Soc Rev; 2014 Feb; 43(4):1156-71. PubMed ID: 24037326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 48-spot single-molecule FRET setup with periodic acceptor excitation.
    Ingargiola A; Segal M; Gulinatti A; Rech I; Labanca I; Maccagnani P; Ghioni M; Weiss S; Michalet X
    J Chem Phys; 2018 Mar; 148(12):123304. PubMed ID: 29604810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Multicolor Single-Molecule FRET Approach to Study Protein Dynamics and Interactions Simultaneously.
    Götz M; Wortmann P; Schmid S; Hugel T
    Methods Enzymol; 2016; 581():487-516. PubMed ID: 27793290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DeepFRET, a software for rapid and automated single-molecule FRET data classification using deep learning.
    Thomsen J; Sletfjerding MB; Jensen SB; Stella S; Paul B; Malle MG; Montoya G; Petersen TC; Hatzakis NS
    Elife; 2020 Nov; 9():. PubMed ID: 33138911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analyzing Single Molecule FRET Trajectories Using HMM.
    Okamoto K
    Methods Mol Biol; 2017; 1552():103-113. PubMed ID: 28224493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detecting molecular interactions in live-cell single-molecule imaging with proximity-assisted photoactivation (PAPA).
    Graham TGW; Ferrie JJ; Dailey GM; Tjian R; Darzacq X
    Elife; 2022 Aug; 11():. PubMed ID: 35976226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How the dyes affect folding of small proteins in single-molecule FRET experiments: A simulation study.
    Chekmarev SF
    Biophys Chem; 2019 Nov; 254():106243. PubMed ID: 31442765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural dynamics of nucleic acids by single-molecule FRET.
    Krüger AC; Hildebrandt LL; Kragh SL; Birkedal V
    Methods Cell Biol; 2013; 113():1-37. PubMed ID: 23317895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Taking the ruler to the jungle: single-molecule FRET for understanding biomolecular structure and dynamics in live cells.
    Sustarsic M; Kapanidis AN
    Curr Opin Struct Biol; 2015 Oct; 34():52-9. PubMed ID: 26295172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of organic fluorophores for in vivo FRET studies based on electroporated molecules.
    Plochowietz A; Crawford R; Kapanidis AN
    Phys Chem Chem Phys; 2014 Jul; 16(25):12688-94. PubMed ID: 24837080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantifying Intramolecular Protein Conformational Dynamics Under Lipid Interaction Using smFRET and FCCS.
    Li P; Dai Y; Seeger M; Tan YW
    Methods Mol Biol; 2019; 1860():345-359. PubMed ID: 30317517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-color alternating-laser excitation of single molecules: monitoring multiple interactions and distances.
    Lee NK; Kapanidis AN; Koh HR; Korlann Y; Ho SO; Kim Y; Gassman N; Kim SK; Weiss S
    Biophys J; 2007 Jan; 92(1):303-12. PubMed ID: 17040983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studying Structural Dynamics of Potassium Channels by Single-Molecule FRET.
    Wang S; Brettmann JB; Nichols CG
    Methods Mol Biol; 2018; 1684():163-180. PubMed ID: 29058191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-Molecule FRET to Measure Conformational Dynamics of DNA Mismatch Repair Proteins.
    Gauer JW; LeBlanc S; Hao P; Qiu R; Case BC; Sakato M; Hingorani MM; Erie DA; Weninger KR
    Methods Enzymol; 2016; 581():285-315. PubMed ID: 27793283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time monitoring of protein-induced DNA conformational changes using single-molecule FRET.
    Schärfen L; Schlierf M
    Methods; 2019 Oct; 169():11-20. PubMed ID: 30776405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.