BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 31071686)

  • 1. Realistic volumetric-approach to simulate transcranial electric stimulation-ROAST-a fully automated open-source pipeline.
    Huang Y; Datta A; Bikson M; Parra LC
    J Neural Eng; 2019 Jul; 16(5):056006. PubMed ID: 31071686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ROAST: An Open-Source, Fully-Automated, Realistic Volumetric-Approach-Based Simulator For TES.
    Huang Y; Datta A; Bikson M; Parra LC
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():3072-3075. PubMed ID: 30441043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic skull segmentation from MR images for realistic volume conductor models of the head: Assessment of the state-of-the-art.
    Nielsen JD; Madsen KH; Puonti O; Siebner HR; Bauer C; Madsen CG; Saturnino GB; Thielscher A
    Neuroimage; 2018 Jul; 174():587-598. PubMed ID: 29518567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated MRI segmentation for individualized modeling of current flow in the human head.
    Huang Y; Dmochowski JP; Su Y; Datta A; Rorden C; Parra LC
    J Neural Eng; 2013 Dec; 10(6):066004. PubMed ID: 24099977
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The New York Head-A precise standardized volume conductor model for EEG source localization and tES targeting.
    Huang Y; Parra LC; Haufe S
    Neuroimage; 2016 Oct; 140():150-62. PubMed ID: 26706450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Applications of open-source software ROAST in clinical studies: A review.
    Nasimova M; Huang Y
    Brain Stimul; 2022; 15(4):1002-1010. PubMed ID: 35843597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A flexible workflow for simulating transcranial electric stimulation in healthy and lesioned brains.
    Kalloch B; Bazin PL; Villringer A; Sehm B; Hlawitschka M
    PLoS One; 2020; 15(5):e0228119. PubMed ID: 32407389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accurate and robust whole-head segmentation from magnetic resonance images for individualized head modeling.
    Puonti O; Van Leemput K; Saturnino GB; Siebner HR; Madsen KH; Thielscher A
    Neuroimage; 2020 Oct; 219():117044. PubMed ID: 32534963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative performance of the finite element method and the boundary element fast multipole method for problems mimicking transcranial magnetic stimulation (TMS).
    Htet AT; Saturnino GB; Burnham EH; Noetscher GM; Nummenmaa A; Makarov SN
    J Neural Eng; 2019 Apr; 16(2):024001. PubMed ID: 30605893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electric field calculations in brain stimulation based on finite elements: an optimized processing pipeline for the generation and usage of accurate individual head models.
    Windhoff M; Opitz A; Thielscher A
    Hum Brain Mapp; 2013 Apr; 34(4):923-35. PubMed ID: 22109746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A semi-automated pipeline for finite element modeling of electric field induced in nonhuman primates by transcranial magnetic stimulation.
    Goswami N; Shen M; Gomez LJ; Dannhauer M; Sommer MA; Peterchev AV
    J Neurosci Methods; 2024 Aug; 408():110176. PubMed ID: 38795980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electric field simulations for transcranial brain stimulation using FEM: an efficient implementation and error analysis.
    Saturnino GB; Madsen KH; Thielscher A
    J Neural Eng; 2019 Nov; 16(6):066032. PubMed ID: 31487695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of segmentation accuracy in structural MR head scans on electric field computation for TMS and tES.
    Rashed EA; Gomez-Tames J; Hirata A
    Phys Med Biol; 2021 Mar; 66(6):064002. PubMed ID: 33524957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A simple method for EEG guided transcranial electrical stimulation without models.
    Cancelli A; Cottone C; Tecchio F; Truong DQ; Dmochowski J; Bikson M
    J Neural Eng; 2016 Jun; 13(3):036022. PubMed ID: 27172063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Benchmarking transcranial electrical stimulation finite element models: a comparison study.
    Indahlastari A; Chauhan M; Sadleir RJ
    J Neural Eng; 2019 Apr; 16(2):026019. PubMed ID: 30605892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the importance of using both T1-weighted and T2-weighted structural magnetic resonance imaging scans to model electric fields induced by non-invasive brain stimulation in SimNIBS.
    Van Hoornweder S; Meesen R; Caulfield KA
    Brain Stimul; 2022; 15(3):641-644. PubMed ID: 35436593
    [No Abstract]   [Full Text] [Related]  

  • 17. Inter-individual and age-dependent variability in simulated electric fields induced by conventional transcranial electrical stimulation.
    Antonenko D; Grittner U; Saturnino G; Nierhaus T; Thielscher A; Flöel A
    Neuroimage; 2021 Jan; 224():117413. PubMed ID: 33011418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An automated pipeline for constructing personalized virtual brains from multimodal neuroimaging data.
    Schirner M; Rothmeier S; Jirsa VK; McIntosh AR; Ritter P
    Neuroimage; 2015 Aug; 117():343-57. PubMed ID: 25837600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of meninges on the electric fields in TES and TMS. Numerical modeling with adaptive mesh refinement.
    Weise K; Wartman WA; Knösche TR; Nummenmaa AR; Makarov SN
    Brain Stimul; 2022; 15(3):654-663. PubMed ID: 35447379
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 16.