These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 31071689)

  • 1. Nanoscale resistive switching memory devices: a review.
    Slesazeck S; Mikolajick T
    Nanotechnology; 2019 Aug; 30(35):352003. PubMed ID: 31071689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoscale resistive switching devices: mechanisms and modeling.
    Yang Y; Lu W
    Nanoscale; 2013 Nov; 5(21):10076-92. PubMed ID: 24057010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physics-based modeling approaches of resistive switching devices for memory and in-memory computing applications.
    Ielmini D; Milo V
    J Comput Electron; 2017; 16(4):1121-1143. PubMed ID: 31997981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resistive Switching Performance Improvement via Modulating Nanoscale Conductive Filament, Involving the Application of Two-Dimensional Layered Materials.
    Li Y; Long S; Liu Q; Lv H; Liu M
    Small; 2017 Sep; 13(35):. PubMed ID: 28417548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integration scheme of nanoscale resistive switching memory using bottom-up processes at room temperature for high-density memory applications.
    Han UB; Lee JS
    Sci Rep; 2016 Jul; 6():28966. PubMed ID: 27364856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stochastic memristive devices for computing and neuromorphic applications.
    Gaba S; Sheridan P; Zhou J; Choi S; Lu W
    Nanoscale; 2013 Jul; 5(13):5872-8. PubMed ID: 23698627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved Stability and Controllability in ZrN-Based Resistive Memory Device by Inserting TiO
    Choi J; Kim S
    Micromachines (Basel); 2020 Sep; 11(10):. PubMed ID: 33003640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulating the filament rupture degree of threshold switching device for self-selective and low-current nonvolatile memory application.
    Zhao X; Niu J; Yang Y; Xiao X; Chen R; Wu Z; Zhang Y; Lv H; Long S; Liu Q; Jiang C; Liu M
    Nanotechnology; 2020 Apr; 31(14):144002. PubMed ID: 31860888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Digital to analog resistive switching transition induced by graphene buffer layer in strontium titanate based devices.
    Wan T; Qu B; Du H; Lin X; Lin Q; Wang DW; Cazorla C; Li S; Liu S; Chu D
    J Colloid Interface Sci; 2018 Feb; 512():767-774. PubMed ID: 29112927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Strategy to Design High-Density Nanoscale Devices utilizing Vapor Deposition of Metal Halide Perovskite Materials.
    Hwang B; Lee JS
    Adv Mater; 2017 Aug; 29(29):. PubMed ID: 28558134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-assembled nanostructured resistive switching memory devices fabricated by templated bottom-up growth.
    Song JM; Lee JS
    Sci Rep; 2016 Jan; 6():18967. PubMed ID: 26739122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Attaining resistive switching characteristics and selector properties by varying forming polarities in a single HfO
    Lin CY; Chen PH; Chang TC; Chang KC; Zhang SD; Tsai TM; Pan CH; Chen MC; Su YT; Tseng YT; Chang YF; Chen YC; Huang HC; Sze SM
    Nanoscale; 2017 Jun; 9(25):8586-8590. PubMed ID: 28636031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analog memory and spike-timing-dependent plasticity characteristics of a nanoscale titanium oxide bilayer resistive switching device.
    Seo K; Kim I; Jung S; Jo M; Park S; Park J; Shin J; Biju KP; Kong J; Lee K; Lee B; Hwang H
    Nanotechnology; 2011 Jun; 22(25):254023. PubMed ID: 21572200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hardware implementation of associative memory characteristics with analogue-type resistive-switching device.
    Moon K; Park S; Jang J; Lee D; Woo J; Cha E; Lee S; Park J; Song J; Koo Y; Hwang H
    Nanotechnology; 2014 Dec; 25(49):495204. PubMed ID: 25414164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new opportunity for the emerging tellurium semiconductor: making resistive switching devices.
    Yang Y; Xu M; Jia S; Wang B; Xu L; Wang X; Liu H; Liu Y; Guo Y; Wang L; Duan S; Liu K; Zhu M; Pei J; Duan W; Liu D; Li H
    Nat Commun; 2021 Oct; 12(1):6081. PubMed ID: 34667171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In-Memory Logic Operations and Neuromorphic Computing in Non-Volatile Random Access Memory.
    Ou QF; Xiong BS; Yu L; Wen J; Wang L; Tong Y
    Materials (Basel); 2020 Aug; 13(16):. PubMed ID: 32785179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resistive switching in sub-micrometric ZnO polycrystalline films.
    Conti D; Laurenti M; Porro S; Giovinazzo C; Bianco S; Fra V; Chiolerio A; Pirri CF; Milano G; Ricciardi C
    Nanotechnology; 2019 Feb; 30(6):065707. PubMed ID: 30523900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlling the Resistive Switching Behavior in Starch-Based Flexible Biomemristors.
    Raeis-Hosseini N; Lee JS
    ACS Appl Mater Interfaces; 2016 Mar; 8(11):7326-32. PubMed ID: 26919221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Artificial Neurons and Synapses Based on Al/a-SiN
    Leng K; Zhu X; Ma Z; Yu X; Xu J; Xu L; Li W; Chen K
    Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compact modeling of CRS devices based on ECM cells for memory, logic and neuromorphic applications.
    Linn E; Menzel S; Ferch S; Waser R
    Nanotechnology; 2013 Sep; 24(38):384008. PubMed ID: 23999250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.