These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 31071690)

  • 1. An age-dependent series of eye models for radiation dosimetry.
    Vejdani-Noghreiyan A; Ebrahimi-Khankook A
    Phys Med Biol; 2019 Jul; 64(13):135004. PubMed ID: 31071690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dose conversion coefficients for monoenergetic electrons incident on a realistic human eye model with different lens cell populations.
    Nogueira P; Zankl M; Schlattl H; Vaz P
    Phys Med Biol; 2011 Nov; 56(21):6919-34. PubMed ID: 21983644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dose conversion coefficients for electron exposure of the human eye lens: calculations including a whole body phantom.
    Behrens R
    Radiat Prot Dosimetry; 2013 Jul; 155(2):224-35. PubMed ID: 23204559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dose conversion coefficients for electron exposure of the human eye lens.
    Behrens R; Dietze G; Zankl M
    Phys Med Biol; 2009 Jul; 54(13):4069-87. PubMed ID: 19502705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A scalable and deformable stylized model of the adult human eye for radiation dose assessment.
    El Basha D; Furuta T; Iyer SSR; Bolch WE
    Phys Med Biol; 2018 May; 63(10):105017. PubMed ID: 29570457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calculation of electron and isotopes dose point kernels with FLUKA Monte Carlo code for dosimetry in nuclear medicine therapy.
    Botta F; Mairani A; Battistoni G; Cremonesi M; Di Dia A; Fassò A; Ferrari A; Ferrari M; Paganelli G; Pedroli G; Valente M
    Med Phys; 2011 Jul; 38(7):3944-54. PubMed ID: 21858991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dose conversion coefficients for neutron exposure to the lens of the human eye.
    Manger RP; Bellamy MB; Eckerman KF
    Radiat Prot Dosimetry; 2012 Mar; 148(4):507-13. PubMed ID: 21531748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluence to effective dose conversion coefficients calculated for monoenergetic electrons up to 200 MeV in partial exposure geometries.
    Kitaichi M; Katagiri M; Hikoji M; Iwai S; Sumiyoshi T; Sawamura S
    Radiat Prot Dosimetry; 2004; 112(3):345-58. PubMed ID: 15494361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CALCULATION OF THE DOSE CONVERSION COEFFICIENTS FOR CHINESE EYE LENS UNDER PHOTON EXPOSURE.
    Teng Z; Song M; Liu S; Wei K; Liu Y
    Radiat Prot Dosimetry; 2021 Dec; 197(3-4):163-174. PubMed ID: 34953467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monte Carlo determination of the conversion coefficients Hp(3)/Ka in a right cylinder phantom with 'PENELOPE' code. Comparison with 'MCNP' simulations.
    Daures J; Gouriou J; Bordy JM
    Radiat Prot Dosimetry; 2011 Mar; 144(1-4):37-42. PubMed ID: 21242167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Individualized adjustments to reference phantom internal organ dosimetry-scaling factors given knowledge of patient internal anatomy.
    Wayson MB; Bolch WE
    Phys Med Biol; 2018 Apr; 63(8):085006. PubMed ID: 29546844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of simulating a realistic eye model on the eye dose of an adult male undergoing head computed tomography.
    Akhlaghi P; Ebrahimi-Khankook A; Vejdani-Noghreiyan A
    Radiat Environ Biophys; 2017 May; 56(2):177-186. PubMed ID: 28283750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Technical note: Influence of the phantom material on the absorbed-dose energy dependence of the EBT3 radiochromic film for photons in the energy range 3 keV-18 MeV.
    Hermida-López M; Lüdemann L; Flühs A; Brualla L
    Med Phys; 2014 Nov; 41(11):112103. PubMed ID: 25370654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of the ICRP/ICRU reference computational phantoms to internal dosimetry: calculation of specific absorbed fractions of energy for photons and electrons.
    Hadid L; Desbrée A; Schlattl H; Franck D; Blanchardon E; Zankl M
    Phys Med Biol; 2010 Jul; 55(13):3631-41. PubMed ID: 20526035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-resolution voxel phantom modeling: a high-resolution eye model for computational dosimetry.
    Caracappa PF; Rhodes A; Fiedler D
    Phys Med Biol; 2014 Sep; 59(18):5261-75. PubMed ID: 25144465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of z overscanning on radiation burden of pediatric patients undergoing head CT with multidetector scanners: a Monte Carlo study.
    Tzedakis A; Perisinakis K; Raissaki M; Damilakis J
    Med Phys; 2006 Jul; 33(7):2472-8. PubMed ID: 16898450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ELECTRON EYE-LENS OPERATIONAL DOSE COEFFICIENTS.
    Dubeau J; Sun J
    Radiat Prot Dosimetry; 2020 Jun; 188(3):372-377. PubMed ID: 31998960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monte Carlo simulation of backscatter from lead for clinical electron beams using EGSnrc.
    Chow JC; Grigorov GN
    Med Phys; 2008 Apr; 35(4):1241-50. PubMed ID: 18491516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. AIR KERMA TO Hp(3) CONVERSION COEFFICIENTS FOR IEC 61267 RQR X-RAY RADIATION QUALITIES: APPLICATION TO DOSE MONITORING OF THE LENS OF THE EYE IN MEDICAL DIAGNOSTICS.
    Principi S; Guardiola C; Duch MA; Ginjaume M
    Radiat Prot Dosimetry; 2016 Sep; 170(1-4):45-8. PubMed ID: 26464527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effective doses and organ doses in the MIRD-5 phantom exposed to monoenergetic 0.1 MeV to 200 MeV electrons in the LAT direction.
    Katagiri M; Hikoji M; Kitaichi M; Aoki Y; Sawamura S
    Radiat Prot Dosimetry; 2001; 95(2):149-56. PubMed ID: 11572643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.