These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 31072359)

  • 1. Autodissemination of pyriproxyfen suppresses stable populations of Anopheles arabiensis under semi-controlled settings.
    Lwetoijera D; Kiware S; Okumu F; Devine GJ; Majambere S
    Malar J; 2019 May; 18(1):166. PubMed ID: 31072359
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effective autodissemination of pyriproxyfen to breeding sites by the exophilic malaria vector Anopheles arabiensis in semi-field settings in Tanzania.
    Lwetoijera D; Harris C; Kiware S; Dongus S; Devine GJ; McCall PJ; Majambere S
    Malar J; 2014 Apr; 13():161. PubMed ID: 24779515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of a new outdoor mosquito control device, the mosquito landing box, on densities and survival of the malaria vector, Anopheles arabiensis, inside controlled semi-field settings.
    Mmbando AS; Okumu FO; Mgando JP; Sumaye RD; Matowo NS; Madumla E; Kaindoa E; Kiware SS; Lwetoijera DW
    Malar J; 2015 Dec; 14():494. PubMed ID: 26645085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sterilized Anopheles funestus can autodisseminate sufficient pyriproxyfen to the breeding habitat under semi-field settings.
    Kunambi HJ; Ngowo H; Ali A; Urio N; Ngonzi AJ; Mwalugelo YA; Jumanne M; Mmbaga A; Tarimo FS; Swilla J; Okumu F; Lwetoijera D
    Malar J; 2023 Sep; 22(1):280. PubMed ID: 37735680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting Scenarios for Successful Autodissemination of Pyriproxyfen by Malaria Vectors from Their Resting Sites to Aquatic Habitats; Description and Simulation Analysis of a Field-Parameterizable Model.
    Kiware SS; Corliss G; Merrill S; Lwetoijera DW; Devine G; Majambere S; Killeen GF
    PLoS One; 2015; 10(7):e0131835. PubMed ID: 26186730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using pastoralist community knowledge to locate and treat dry-season mosquito breeding habitats with pyriproxyfen to control Anopheles gambiae s.l. and Anopheles funestus s.l. in rural Tanzania.
    Lupenza ET; Kihonda J; Limwagu AJ; Ngowo HS; Sumaye RD; Lwetoijera DW
    Parasitol Res; 2021 Apr; 120(4):1193-1202. PubMed ID: 33409645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Testing a pyriproxyfen auto-dissemination station attractive to gravid Anopheles gambiae sensu stricto for the development of a novel attract-release -and-kill strategy for malaria vector control.
    Mbare O; Lindsay SW; Fillinger U
    BMC Infect Dis; 2019 Sep; 19(1):800. PubMed ID: 31510931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Community perception of the autodissemination of pyriproxyfen for controlling malaria vectors in south-eastern Tanzania.
    Tarimo FS; Dillip A; Kosia EM; Lwetoijera DW
    Malar J; 2023 Nov; 22(1):333. PubMed ID: 37924148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sub-lethal aquatic doses of pyriproxyfen may increase pyrethroid resistance in malaria mosquitoes.
    Opiyo MA; Ngowo HS; Mapua SA; Mpingwa M; Nchimbi N; Matowo NS; Majambere S; Okumu FO
    PLoS One; 2021; 16(3):e0248538. PubMed ID: 33735241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Current and future opportunities of autodissemination of pyriproxyfen approach for malaria vector control in urban and rural Africa.
    Mmbaga AT; Lwetoijera DW
    Wellcome Open Res; 2023; 8():119. PubMed ID: 37440995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of an autodissemination strategy for the deployment of novel control agents targeting the common malaria mosquito, Anopheles quadrimaculatus say (Diptera: Culicidae).
    Swale DR; Li Z; Kraft JZ; Healy K; Liu M; David CM; Liu Z; Foil LD
    PLoS Negl Trop Dis; 2018 Apr; 12(4):e0006259. PubMed ID: 29641515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wild populations of malaria vectors can mate both inside and outside human dwellings.
    Nambunga IH; Msugupakulya BJ; Hape EE; Mshani IH; Kahamba NF; Mkandawile G; Mabula DM; Njalambaha RM; Kaindoa EW; Muyaga LL; Hermy MRG; Tripet F; Ferguson HM; Ngowo HS; Okumu FO
    Parasit Vectors; 2021 Oct; 14(1):514. PubMed ID: 34620227
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of vegetation densities on the performance of attractive targeted sugar baits (ATSBs) for malaria vector control: a semi-field study.
    Muyaga LL; Meza FC; Kahamba NF; Njalambaha RM; Msugupakulya BJ; Kaindoa EW; Ngowo HS; Okumu FO
    Malar J; 2023 Jun; 22(1):190. PubMed ID: 37344867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of an ultraviolet LED trap for catching Anopheles and Culex mosquitoes in south-eastern Tanzania.
    Mwanga EP; Ngowo HS; Mapua SA; Mmbando AS; Kaindoa EW; Kifungo K; Okumu FO
    Parasit Vectors; 2019 Aug; 12(1):418. PubMed ID: 31455370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Seasonal field efficacy of pyriproxyfen autodissemination stations against container-inhabiting mosquito Aedes albopictus under different habitat conditions.
    Suman DS; Wang Y; Faraji A; Williams GM; Williges E; Gaugler R
    Pest Manag Sci; 2018 Apr; 74(4):885-895. PubMed ID: 29087613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sterilising effects of pyriproxyfen on Anopheles arabiensis and its potential use in malaria control.
    Harris C; Lwetoijera DW; Dongus S; Matowo NS; Lorenz LM; Devine GJ; Majambere S
    Parasit Vectors; 2013 May; 6():144. PubMed ID: 23683439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of a push-pull system consisting of transfluthrin-treated eave ribbons and odour-baited traps for control of indoor- and outdoor-biting malaria vectors.
    Mmbando AS; Batista EPA; Kilalangongono M; Finda MF; Mwanga EP; Kaindoa EW; Kifungo K; Njalambaha RM; Ngowo HS; Eiras AE; Okumu FO
    Malar J; 2019 Mar; 18(1):87. PubMed ID: 30894185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting a Hidden Enemy: Pyriproxyfen Autodissemination Strategy for the Control of the Container Mosquito Aedes albopictus in Cryptic Habitats.
    Chandel K; Suman DS; Wang Y; Unlu I; Williges E; Williams GM; Gaugler R
    PLoS Negl Trop Dis; 2016 Dec; 10(12):e0005235. PubMed ID: 28033379
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effectiveness of autodissemination stations containing pyriproxyfen in reducing immature Aedes albopictus populations.
    Unlu I; Suman DS; Wang Y; Klingler K; Faraji A; Gaugler R
    Parasit Vectors; 2017 Mar; 10(1):139. PubMed ID: 28279191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dose-response tests and semi-field evaluation of lethal and sub-lethal effects of slow release pyriproxyfen granules (Sumilarv®0.5G) for the control of the malaria vectors Anopheles gambiae sensu lato.
    Mbare O; Lindsay SW; Fillinger U
    Malar J; 2013 Mar; 12():94. PubMed ID: 23497149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.